scispace - formally typeset
Search or ask a question
Institution

University of Arizona

EducationTucson, Arizona, United States
About: University of Arizona is a education organization based out in Tucson, Arizona, United States. It is known for research contribution in the topics: Population & Galaxy. The organization has 63805 authors who have published 155998 publications receiving 6854915 citations. The organization is also known as: UA & U of A.
Topics: Population, Galaxy, Star formation, Redshift, Planet


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the formation of galaxies in a large volume (50 h −1 Mpc, 2 × 288 3 particles) cosmological simulation, evolved using the entropy and energy-conserving smoothed particle hydrodynamics (SPH) code GADGET-2.
Abstract: We study the formation of galaxies in a large volume (50 h −1 Mpc, 2 × 288 3 particles) cosmological simulation, evolved using the entropy and energy-conserving smoothed particle hydrodynamics (SPH) code GADGET-2. Most of the baryonic mass in galaxies of all masses is originally acquired through filamentary ‘cold mode’ accretion of gas that was never shock heated to its halo virial temperature, confirming the key feature of our earlier results obtained with a different SPH code. Atmospheres of hot, virialized gas develop in haloes above 2–3 × 10 11 M � , a transition mass that is nearly constant from z = 3 to 0. Cold accretion persists in haloes above the transition mass, especially at z ≥ 2. It dominates the growth of galaxies in low-mass haloes at all times, and it is the main driver of the cosmic star formation history. Our results suggest that the cooling of shock-heated virialized gas, which has been the focus of many analytic models of galaxy growth spanning more than three decades, might be a relatively minor element of galaxy formation. At high redshifts, satellite galaxies have gas accretion rates similar to central galaxies of the same baryonic mass, but at z < 1t he accretion rates of low-mass satellites are well below those of comparable central galaxies. Relative to our earlier simulations, the GADGET-2 simulations predict much lower rates of ‘hot mode’ accretion from the virialized gas component. Hot accretion rates compete with cold accretion rates near the transition mass, but only at z ≤ 1. Hot accretion is inefficient in haloes

820 citations

Journal ArticleDOI
27 Sep 2002-Science
TL;DR: Microarray analysis of all P450s in Drosophila melanogaster shows that DDT-R, a gene conferring resistance to DDT, is associated with overtranscription of a single cytochrome P450 gene, Cyp6g1, which has spread globally.
Abstract: Insecticide resistance is one of the most widespread genetic changes caused by human activity, but we still understand little about the origins and spread of resistant alleles in global populations of insects. Here, via microarray analysis of all P450s in Drosophila melanogaster, we show that DDT-R, a gene conferring resistance to DDT, is associated with overtranscription of a single cytochrome P450 gene, Cyp6g1. Transgenic analysis of Cyp6g1 shows that overtranscription of this gene alone is both necessary and sufficient for resistance. Resistance and up-regulation in Drosophila populations are associated with a single Cyp6g1 allele that has spread globally. This allele is characterized by the insertion of an Accord transposable element into the 5' end of the Cyp6g1 gene.

819 citations

Journal ArticleDOI
TL;DR: The distinct timing and distribution of these effects provide biological support for theories that distinguish between these types of grammatical rules and constraints and more generally for the proposal that semantic and grammatical processes are distinct subsystems within the language faculty.
Abstract: Theoretical considerations and diverse empirical data from clinical, psycholinguistic, and developmental studies suggest that language comprehension processes are decomposable into separate subsystems, including distinct systems for semantic and grammatical processing. Here we report that event-related potentials (ERPs) to syntactically well-formed but semantically anomalous sentences produced a pattern of brain activity that is distinct in timing and distribution from the patterns elicited by syntactically deviant sentences, and further, that different types of syntactic deviance produced distinct ERP patterns. Forty right-handed young adults read sentences presented at 2 words/sec while ERPs were recorded from over several positions between and within the hemispheres. Half of the sentences were semantically and grammatically acceptable and were controls for the remainder, which contained sentence medial words that violated (1) semantic expectations, (2) phrase structure rules, or (3) WH-movement constraints on Specificity and (4) Subjacency. As in prior research, the semantic anomalies produced a negative potential, N400, that was bilaterally distributed and was largest over posterior regions. The phrase structure violations enhanced the N125 response over anterior regions of the left hemisphere, and elicited a negative response (300-500 msec) over temporal and parietal regions of the left hemisphere. Violations of Specificity constraints produced a slow negative potential, evident by 125 msec, that was also largest over anterior regions of the left hemisphere. Violations of Subjacency constraints elicited a broadly and symmetrically distributed positivity that onset around 200 msec. The distinct timing and distribution of these effects provide biological support for theories that distinguish between these types of grammatical rules and constraints and more generally for the proposal that semantic and grammatical processes are distinct subsystems within the language faculty.

818 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented the discovery of three new quasars at z > 6 in ~ 1300 deg2 of Sloan Digital Sky Survey imaging data, J114816.64+525150.43, J104845.05+463718.23, and J163033.90+401209.6 (z = 6.05).
Abstract: We present the discovery of three new quasars at z > 6 in ~ 1300 deg2 of Sloan Digital Sky Survey imaging data, J114816.64+525150.3 (z = 6.43), J104845.05+463718.3 (z = 6.23), and J163033.90+401209.6 (z = 6.05). The first two objects have weak Lyα emission lines; their redshifts are determined from the positions of the Lyman break. They are only accurate to ~0.05 and could be affected by the presence of broad absorption line systems. The last object has a Lyα strength more typical of lower redshift quasars. Based on a sample of six quasars at z > 5.7 that cover 2870 deg2 presented in this paper and in Paper I, we estimate the comoving density of luminous quasars at z ~ 6 and M1450 5.7 quasars and high-resolution, ground-based images (seeing ~04) of three additional z > 5.7 quasars show that none of them is gravitationally lensed. The luminosity distribution of the high-redshift quasar sample suggests the bright-end slope of the quasar luminosity function at z ~ 6 is shallower than Ψ ∝ L-3.5 (2 σ), consistent with the absence of strongly lensed objects.

817 citations

Journal ArticleDOI
TL;DR: In this article, a diverse sample of galaxies from the literature with far-ultraviolet (FUV), optical, infrared (IR), and radio luminosities was assembled to explore the calibration of radio-derived and IR-derived star formation (SF) rates and the origin of the radio-IR correlation.
Abstract: I have assembled a diverse sample of galaxies from the literature with far-ultraviolet (FUV), optical, infrared (IR), and radio luminosities to explore the calibration of radio-derived and IR-derived star formation (SF) rates and the origin of the radio-IR correlation. By comparing the 8-1000 μm IR, which samples dust-reprocessed starlight, with direct stellar FUV emission, I show that the IR traces most of the SF in luminous ~L* galaxies but traces only a small fraction of the SF in faint ~0.01L* galaxies. If radio emission were a perfect SF rate indicator, this effect would cause easily detectable curvature in the radio-IR correlation. Yet, the radio-IR correlation is nearly linear. This implies that the radio flux from low-luminosity galaxies is substantially suppressed, compared to brighter galaxies. This is naturally interpreted in terms of a decreasing efficiency of nonthermal radio emission in faint galaxies. Thus, the linearity of the radio-IR correlation is a conspiracy: both indicators underestimate the SF rate at low luminosities. SF rate calibrations that take into account this effect are presented, along with estimates of the random and systematic error associated with their use.

817 citations


Authors

Showing all 64388 results

NameH-indexPapersCitations
Simon D. M. White189795231645
Julie E. Buring186950132967
David H. Weinberg183700171424
Richard Peto183683231434
Xiaohui Fan183878168522
Dennis S. Charney179802122408
Daniel J. Eisenstein179672151720
David Haussler172488224960
Carlos S. Frenk165799140345
Jian-Kang Zhu161550105551
Tobin J. Marks1591621111604
Todd Adams1541866143110
Jane A. Cauley15191499933
Wei Zheng1511929120209
Daniel L. Schacter14959290148
Network Information
Related Institutions (5)
University of California, San Diego
204.5K papers, 12.3M citations

91% related

Cornell University
235.5K papers, 12.2M citations

90% related

University of Washington
305.5K papers, 17.7M citations

90% related

University of Michigan
342.3K papers, 17.6M citations

90% related

Harvard University
530.3K papers, 38.1M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023205
2022987
20217,005
20207,325
20196,716
20186,375