scispace - formally typeset
Search or ask a question
Institution

University of Arizona

EducationTucson, Arizona, United States
About: University of Arizona is a education organization based out in Tucson, Arizona, United States. It is known for research contribution in the topics: Population & Galaxy. The organization has 63805 authors who have published 155998 publications receiving 6854915 citations. The organization is also known as: UA & U of A.
Topics: Population, Galaxy, Star formation, Redshift, Planet


Papers
More filters
Journal ArticleDOI
Nasim Azani1, Marielle Babineau2, C. Donovan Bailey3, Hannah Banks4, Ariane R. Barbosa5, Rafael Barbosa Pinto6, James S. Boatwright7, Leonardo Maurici Borges8, Gillian K. Brown9, Anne Bruneau2, Elisa Silva Candido6, Domingos Cardoso10, Kuo-Fang Chung11, Ruth Clark4, Adilva de Souza Conceição, Michael D. Crisp12, Paloma Cubas13, Alfonso Delgado-Salinas14, Kyle G. Dexter, Jeff J. Doyle15, Jérôme Duminil16, Ashley N. Egan17, Manuel de la Estrella4, Marcus J. Falcao, Dmitry A. Filatov18, Ana Paula Fortuna-Perez19, Renee Hersilia Fortunato20, Edeline Gagnon2, Peter Gasson4, Juliana Gastaldello Rando21, Ana Maria Goulart de Azevedo Tozzi6, Bee F. Gunn12, David Harris22, Elspeth Haston22, Julie A. Hawkins23, Patrick S. Herendeen, Colin E. Hughes24, João Ricardo Vieira Iganci25, Firouzeh Javadi26, Sheku Alfred Kanu27, Shahrokh Kazempour-Osaloo28, Geoffrey C. Kite4, Bente B. Klitgaard4, Fabio J. Kochanovski6, Erik J. M. Koenen24, Lynsey Kovar3, Matt Lavin29, M. Marianne le Roux30, Gwilym P. Lewis4, Haroldo Cavalcante de Lima, Maria Cristina Lopez-Roberts5, Barbara A. Mackinder22, Vitor Hugo Maia31, Valéry Malécot32, Vidal de Freitas Mansano, Brigitte Marazzi, Sawai Mattapha23, Joseph T. Miller33, Chika Mitsuyuki26, Tania M. Moura34, Daniel J. Murphy4, Madhugiri Nageswara-Rao3, Bruno Nevado18, Danilo M. Neves4, Dario I. Ojeda16, R. Toby Pennington22, Darirn E. Prado35, Gerhard Prenner4, Luciano Paganucci de Queiroz5, Gustavo Ramos10, Fabiana L. Ranzato Filardi, Pétala Gomes Ribeiro5, María de Lourdes Rico-Arce4, Michael J. Sanderson36, Juliana Santos-Silva, Wallace M. B. São-Mateus37, Marcos J. S. Silva38, Marcelo F. Simon39, Carole Sinou2, Cristiane Snak5, Élvia R. de Souza, Janet I. Sprent40, Kelly P. Steele41, Julia E. Steier42, Royce Steeves2, Charles H. Stirton43, Shuichiro Tagane26, Benjamin M. Torke44, Hironori Toyama26, Daiane Trabuco da Cruz5, Mohammad Vatanparast17, Jan J. Wieringa45, Michael Wink46, Martin F. Wojciechowski42, Tetsukazu Yahara26, Ting-Shuang Yi47, Erin Zimmerman2 
01 Feb 2017-Taxon
TL;DR: The classification of the legume family proposed here addresses the long-known non-monophyly of the traditionally recognised subfamily Caesalpinioideae, by recognising six robustly supported monophyletic subfamilies and reflects the phylogenetic structure that is consistently resolved.
Abstract: The classification of the legume family proposed here addresses the long-known non-monophyly of the traditionally recognised subfamily Caesalpinioideae, by recognising six robustly supported monophyletic subfamilies. This new classification uses as its framework the most comprehensive phylogenetic analyses of legumes to date, based on plastid matK gene sequences, and including near-complete sampling of genera (698 of the currently recognised 765 genera) and ca. 20% (3696) of known species. The matK gene region has been the most widely sequenced across the legumes, and in most legume lineages, this gene region is sufficiently variable to yield well-supported clades. This analysis resolves the same major clades as in other phylogenies of whole plastid and nuclear gene sets (with much sparser taxon sampling). Our analysis improves upon previous studies that have used large phylogenies of the Leguminosae for addressing evolutionary questions, because it maximises generic sampling and provides a phylogenetic tree that is based on a fully curated set of sequences that are vouchered and taxonomically validated. The phylogenetic trees obtained and the underlying data are available to browse and download, facilitating subsequent analyses that require evolutionary trees. Here we propose a new community-endorsed classification of the family that reflects the phylogenetic structure that is consistently resolved and recognises six subfamilies in Leguminosae: a recircumscribed Caesalpinioideae DC., Cercidoideae Legume Phylogeny Working Group (stat. nov.), Detarioideae Burmeist., Dialioideae Legume Phylogeny Working Group (stat. nov.), Duparquetioideae Legume Phylogeny Working Group (stat. nov.), and Papilionoideae DC. The traditionally recognised subfamily Mimosoideae is a distinct clade nested within the recircumscribed Caesalpinioideae and is referred to informally as the mimosoid clade pending a forthcoming formal tribal and/or cladebased classification of the new Caesalpinioideae. We provide a key for subfamily identification, descriptions with diagnostic charactertistics for the subfamilies, figures illustrating their floral and fruit diversity, and lists of genera by subfamily. This new classification of Leguminosae represents a consensus view of the international legume systematics community; it invokes both compromise and practicality of use.

697 citations

Journal ArticleDOI
TL;DR: The preponderance of epidemiologic and tissue compositional studies supports a protective effect of omega-3 EFA intake, particularly eicosapentaenoic acid (EPA) and docosahexaenoic Acid (DHA), in mood disorders.
Abstract: Objective To determine if the available data support the use of omega-3 essential fatty acids (EFA) for clinical use in the prevention and/or treatment of psychiatric disorders. Participants The authors of this article were invited participants in the Omega-3 Fatty Acids Subcommittee, assembled by the Committee on Research on Psychiatric Treatments of the American Psychiatric Association (APA). Evidence Published literature and data presented at scientific meetings were reviewed. Specific disorders reviewed included major depressive disorder, bipolar disorder, schizophrenia, dementia, borderline personality disorder and impulsivity, and attention-deficit/hyperactivity disorder. Meta-analyses were conducted in major depressive and bipolar disorders and schizophrenia, as sufficient data were available to conduct such analyses in these areas of interest. Consensus process The subcommittee prepared the manuscript, which was reviewed and approved by the following APA committees: the Committee on Research on Psychiatric Treatments, the Council on Research, and the Joint Reference Committee. Conclusions The preponderance of epidemiologic and tissue compositional studies supports a protective effect of omega-3 EFA intake, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in mood disorders. Meta-analyses of randomized controlled trials demonstrate a statistically significant benefit in unipolar and bipolar depression (p = .02). The results were highly heterogeneous, indicating that it is important to examine the characteristics of each individual study to note the differences in design and execution. There is less evidence of benefit in schizophrenia. EPA and DHA appear to have negligible risks and some potential benefit in major depressive disorder and bipolar disorder, but results remain inconclusive in most areas of interest in psychiatry. Treatment recommendations and directions for future research are described. Health benefits of omega-3 EFA may be especially important in patients with psychiatric disorders, due to high prevalence rates of smoking and obesity and the metabolic side effects of some psychotropic medications.

697 citations

Journal ArticleDOI
TL;DR: In this paper, the limiting behavior of systems of hyperbolic conservation laws with stiff relaxation terms was studied and the convergence to the reduced dynamics for the 2 × 2 case was studied.
Abstract: We study the limiting behavior of systems of hyperbolic conservation laws with stiff relaxation terms. Reduced systems, inviscid and viscous local conservation laws, and weakly nonlinear limits are derived through asymptotic expansions. An entropy condition is introduced for N × N systems that ensures the hyperbolicity of the reduced inviscid system. The resulting characteristic speeds are shown to be interlaced with those of the original system. Moreover, the first correction to the reduced system is shown to be dissipative. A partial converse is proved for 2 × 2 systems. This structure is then applied to study the convergence to the reduced dynamics for the 2 × 2 case. © 1994 John Wiley & Sons, Inc.

696 citations

Journal ArticleDOI
TL;DR: In this paper, a new census of the stellar and substellar members of the young cluster IC 348 is presented, which contains a total of 288 members, 23 of which are later than M6 and thus are likely to be brown dwarfs.
Abstract: We present a new census of the stellar and substellar members of the young cluster IC 348. We have obtained images at I and Z for a 42' × 28' field encompassing the cluster and have combined these measurements with previous optical and near-infrared photometry. From spectroscopy of candidate cluster members appearing in these data, we have identified 122 new members, 15 of which have spectral types of M6.5-M9, corresponding to masses of ~0.08-0.015 M☉ by recent evolutionary models. The latest census for IC 348 now contains a total of 288 members, 23 of which are later than M6 and thus are likely to be brown dwarfs. From an extinction-limited sample of members (AV ≤ 4) for a 16' × 14' field centered on the cluster, we construct an initial mass function (IMF) that is unbiased in mass and nearly complete for M/M☉ ≥ 0.03 (M8). In logarithmic units where the Salpeter slope is 1.35, the mass function for IC 348 rises from high masses down to a solar mass, rises more slowly down to a maximum at 0.1-0.2 M☉, and then declines into the substellar regime. In comparison, the similarly derived IMF for Taurus from Briceno et al. and Luhman et al. rises quickly to a peak near 0.8 M☉ and steadily declines to lower masses. The distinctive shapes of the IMFs in IC 348 and Taurus are reflected in the distributions of spectral types, which peak at M5 and K7, respectively. These data provide compelling, model-independent evidence for a significant variation of the IMF with star-forming conditions.

696 citations

Journal ArticleDOI
TL;DR: It is found that MLC phosphorylation is both necessary and sufficient for the assembly of stress fibers and focal adhesions in 3T3 fibroblasts, suggesting that ROCK and MLCK play distinct roles in spatial regulation of MLCosphorylation.
Abstract: ROCK (Rho-kinase), an effector molecule of RhoA, phosphorylates the myosin binding subunit (MBS) of myosin phosphatase and inhibits the phosphatase activity. This inhibition increases phosphorylation of myosin light chain (MLC) of myosin II, which is suggested to induce RhoA-mediated assembly of stress fibers and focal adhesions. ROCK is also known to directly phosphorylate MLC in vitro; however, the physiological significance of this MLC kinase activity is unknown. It is also not clear whether MLC phosphorylation alone is sufficient for the assembly of stress fibers and focal adhesions. We have developed two reagents with opposing effects on myosin phosphatase. One is an antibody against MBS that is able to inhibit myosin phosphatase activity. The other is a truncation mutant of MBS that constitutively activates myosin phosphatase. Through microinjection of these two reagents followed by immunofluorescence with a specific antibody against phosphorylated MLC, we have found that MLC phosphorylation is both necessary and sufficient for the assembly of stress fibers and focal adhesions in 3T3 fibroblasts. The assembly of stress fibers in the center of cells requires ROCK activity in addition to the inhibition of myosin phosphatase, suggesting that ROCK not only inhibits myosin phosphatase but also phosphorylates MLC directly in the center of cells. At the cell periphery, on the other hand, MLCK but not ROCK appears to be the kinase responsible for phosphorylating MLC. These results suggest that ROCK and MLCK play distinct roles in spatial regulation of MLC phosphorylation.

695 citations


Authors

Showing all 64388 results

NameH-indexPapersCitations
Simon D. M. White189795231645
Julie E. Buring186950132967
David H. Weinberg183700171424
Richard Peto183683231434
Xiaohui Fan183878168522
Dennis S. Charney179802122408
Daniel J. Eisenstein179672151720
David Haussler172488224960
Carlos S. Frenk165799140345
Jian-Kang Zhu161550105551
Tobin J. Marks1591621111604
Todd Adams1541866143110
Jane A. Cauley15191499933
Wei Zheng1511929120209
Daniel L. Schacter14959290148
Network Information
Related Institutions (5)
University of California, San Diego
204.5K papers, 12.3M citations

91% related

Cornell University
235.5K papers, 12.2M citations

90% related

University of Washington
305.5K papers, 17.7M citations

90% related

University of Michigan
342.3K papers, 17.6M citations

90% related

Harvard University
530.3K papers, 38.1M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023205
2022987
20217,005
20207,325
20196,716
20186,375