scispace - formally typeset
Search or ask a question
Institution

University of Arkansas

EducationFayetteville, Arkansas, United States
About: University of Arkansas is a education organization based out in Fayetteville, Arkansas, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 17225 authors who have published 33329 publications receiving 941102 citations. The organization is also known as: Arkansas & UA.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a set of internal coordinates, the natural valence coordinates, is proposed to reduce both harmonic and anharmonic coupling terms in the potential function as much as possible in a purely geometrical definition.
Abstract: Two suggestions are made to increase the efficiency and accuracy of ab initio optimization of molecular geometries. To improve the convergence of the optimization, a set of internal coordinates, the natural valence coordinates, is suggested. These coordinates originate from vibrational spectroscopy and reduce both harmonic and anharmonic coupling terms in the potential function as much as possible in a purely geometrical definition. The natural valence coordinates are local, eliminate most redundancies, and conform to local pseudosymmetry. Special attention has been paid to ring systems. A computer program has been included in our program system TX90 to generate the natural internal coordinates automatically. The usefulness of these coordinates is demonstrated by numerous examples of ab initio geometry optimization. Starting with a geometry preoptimized by molecular mechanics and using a simple diagonal estimate of the Hessian in conjunction with the GDIIS optimization technique, we usually achieved convergence in 8-15 steps, even for large molecules. It is demonstrated that, due to the reduction in anharmonic couplings, natural coordinates are superior to Cartesian or other simple internal coordinates, even when an accurate initial Hessian is available. Constrained optimization and the location of transition states are also discussed. The gradient optimization method has been generalized to handle redundancies; this is necessary in some complex polycyclic molecules and is illustrated on, among others, the porphine molecule. To increase the accuracy of relatively low-level calculations, empirical corrections to ab initio SCF geometries are suggested in the form of “offset forces” acting along bonds. We recommend offset forces for the most important bonds, to be used with the 4-21G(*) and the 6-31G* basis sets. Based on 130 comparisons, the mean absolute error between theoretical and experimental bond lengths is reduced this way from 0.014 to 0.005 A.

880 citations

Journal ArticleDOI
TL;DR: It is shown that the estimation error remains bounded if the system satisfies the nonlinear observability rank condition and the initial estimation error as well as the disturbing noise terms are small enough.
Abstract: The authors analyze the error behavior for the discrete-time extended Kalman filter for general nonlinear systems in a stochastic framework. In particular, it is shown that the estimation error remains bounded if the system satisfies the nonlinear observability rank condition and the initial estimation error as well as the disturbing noise terms are small enough. This result is verified by numerical simulations for an example system.

867 citations

Book
01 Jan 1991
TL;DR: McClary's "Feminine Endings" as mentioned in this paper is a collection of essays in feminist music criticism, addressing problems of gender and sexuality in repertoires ranging from the early seventeenth century to rock and performance art.
Abstract: A groundbreaking collection of essays in feminist music criticism, this book addresses problems of gender and sexuality in repertoires ranging from the early seventeenth century to rock and performance art. ". . . this is a major book . . . [McClary's] achievement borders on the miraculous." The Village Voice"No one will read these essays without thinking about and hearing music in new and interesting ways. Exciting reading for adventurous students and staid professionals." Choice"Feminine Endings, a provocative 'sexual politics' of Western classical or art music, rocks conservative musicology at its core. No review can do justice to the wealth of ideas and possibilities [McClary's] book presents. All music-lovers should read it, and cheer." The Women's Review of Books"McClary writes with a racy, vigorous, and consistently entertaining style. . . . What she has to say specifically about the music and the text is sharp, accurate, and telling; she hears what takes place musically with unusual sensitivity."-The New York Review of Books

865 citations

Journal ArticleDOI
01 Jul 2018
TL;DR: A review of the state of the art and scientific needs for heterogeneous electrocatalysts for electrochemical reduction of dinitrogen to ammonia can be found in this article, with a particular focus on how mechanistic understanding informs catalyst design.
Abstract: The production of synthetic ammonia remains dependent on the energy- and capital-intensive Haber–Bosch process. Extensive research in molecular catalysis has demonstrated ammonia production from dinitrogen, albeit at low production rates. Mechanistic understanding of dinitrogen reduction to ammonia continues to be delineated through study of molecular catalyst structure, as well as through understanding the naturally occurring nitrogenase enzyme. The transition to Haber–Bosch alternatives through robust, heterogeneous catalyst surfaces remains an unsolved research challenge. Catalysts for electrochemical reduction of dinitrogen to ammonia are a specific focus of research, due to the potential to compete with the Haber–Bosch process and reduce associated carbon dioxide emissions. However, limited progress has been made to date, as most electrocatalyst surfaces lack specificity towards nitrogen fixation. In this Review, we discuss the progress of the field in developing a mechanistic understanding of nitrogenase-promoted and molecular catalyst-promoted ammonia synthesis and provide a review of the state of the art and scientific needs for heterogeneous electrocatalysts. The artificial synthesis of ammonia remains one of the most important catalytic processes worldwide, over 100 years after its development. In this Review, recent developments in enzymatic, homogeneous and heterogeneous catalysis towards the conversion of nitrogen to ammonia are discussed, with a particular focus on how mechanistic understanding informs catalyst design.

864 citations

Journal ArticleDOI
TL;DR: In this mini review, the current management principles, including the spectrum of medications that are currently used for pharmacologic management, for lowering the elevated blood glucose in T2DM are outlined.
Abstract: Type 2 diabetes mellitus (T2DM) is a global pandemic, as evident from the global cartographic picture of diabetes by the International Diabetes Federation (http://www.diabetesatlas.org/). Diabetes mellitus is a chronic, progressive, incompletely understood metabolic condition chiefly characterized by hyperglycemia. Impaired insulin secretion, resistance to tissue actions of insulin, or a combination of both are thought to be the commonest reasons contributing to the pathophysiology of T2DM, a spectrum of disease originally arising from tissue insulin resistance and gradually progressing to a state characterized by complete loss of secretory activity of the beta cells of the pancreas. T2DM is a major contributor to the very large rise in the rate of non-communicable diseases affecting developed as well as developing nations. In this mini review, we endeavor to outline the current management principles, including the spectrum of medications that are currently used for pharmacologic management, for lowering the elevated blood glucose in T2DM.

841 citations


Authors

Showing all 17387 results

NameH-indexPapersCitations
Robert M. Califf1961561167961
Hugh A. Sampson14781676492
Stephen Boyd138822151205
Nikhil C. Munshi13490667349
Jian-Guo Bian128121980964
Bart Barlogie12677957803
Robert R. Wolfe12456654000
Daniel B. Mark12457678385
E. Magnus Ohman12462268976
Benoît Roux12049362215
Robert C. Haddon11257752712
Rodney J. Bartlett10970056154
Baoshan Xing10982348944
Gareth J. Morgan109101952957
Josep Dalmau10856849331
Network Information
Related Institutions (5)
Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

95% related

University of Florida
200K papers, 7.1M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202380
2022244
20211,973
20201,889
20191,737
20181,636