scispace - formally typeset
Search or ask a question
Institution

University of Arkansas

EducationFayetteville, Arkansas, United States
About: University of Arkansas is a education organization based out in Fayetteville, Arkansas, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 17225 authors who have published 33329 publications receiving 941102 citations. The organization is also known as: Arkansas & UA.


Papers
More filters
Journal ArticleDOI
TL;DR: For example, the authors found that contamination fear was best predicted by seven different disgust domains, thereby suggesting that the contamination fear is accounted for by generalized, rather than domain-specific, disgust elicitors.

202 citations

Journal ArticleDOI
TL;DR: The configurable computing community should focus on refining the emerging architectures, producing more effective software/hardware APIs, better tools for application development that incorporate the models of hardware reconfiguration, and effective benchmarking strategies.
Abstract: Configurable computing offers the potential of producing powerful new computing systems. Will current research overcome the dearth of commercial applicability to make such systems a reality? Unfortunately, no system to date has yet proven attractive or competitive enough to establish a commercial presence. We believe that ample opportunity exists for work in a broad range of areas. In particular, the configurable computing community should focus on refining the emerging architectures, producing more effective software/hardware APIs, better tools for application development that incorporate the models of hardware reconfiguration, and effective benchmarking strategies.

201 citations

Journal ArticleDOI
TL;DR: Green chemistry principles have gradually been implemented into the development of the synthetic chemistry of high-quality semiconductor nanocrystals and the resulting alternative routes are safe, simple, inexpensive, reproducible, versatile, "user friendly", and yield nanocrystal with well-controlled size, shape, and size/shape distribution.
Abstract: Green chemistry principles have gradually been implemented into the development of the synthetic chemistry of high-quality semiconductor nanocrystals. In comparison with the original organometallic approach, the resulting alternative routes are safe, simple, inexpensive, reproducible, versatile, "user friendly", and yield nanocrystals with well-controlled size, shape, and size/shape distribution. Further developments in this direction will promote the understanding of crystallization in general.

201 citations

Journal ArticleDOI
TL;DR: THYLAKOID FORMATION1 (THF1) is demonstrated in vivo as a Gα interaction partner that functions downstream of the plasma membrane–delimited heterotrimeric G-protein (GPA1) in a d-glucose signaling pathway and provides evidence of a sugar-signaling mechanism between plastids and the plasma membranes.
Abstract: Mutations in genes encoding components of the heterotrimeric G-protein complex were previously shown to confer altered sensitivity to increased levels of d-glucose. This suggests that G-protein coupling may be a novel sugar-signaling mechanism in Arabidopsis thaliana. THYLAKOID FORMATION1 (THF1) is here demonstrated in vivo as a Gα interaction partner that functions downstream of the plasma membrane–delimited heterotrimeric G-protein (GPA1) in a d-glucose signaling pathway. THF1 is a plastid protein localized to both the outer plastid membrane and the stroma. Contact between root plastidic THF1 and GPA1 at the plasma membrane occurs at sites where the plastid membrane abuts the plasma membrane, as demonstrated by Forster resonance energy transfer (FRET). A probable role for THF1 in sugar signaling is demonstrated by both biochemical and genetic evidence. Root growth in the thf1-1 null mutant is hypersensitive to exogenous d-glucose, and THF1-overexpressing roots are resistant to inhibition of growth rate by high d-glucose. Additionally, THF1 levels are rapidly degraded by d-glucose but not l-glucose. The interaction between THF1 and GPA1 has been confirmed by in vitro and in vivo coimmunoprecipitation, FRET analysis, and genetic epistasis and provides evidence of a sugar-signaling mechanism between plastids and the plasma membrane.

200 citations

Journal ArticleDOI
TL;DR: The authors found a negative association between CEO inside debt holdings and the volatility of future firm stock returns, R&D expenditures, and financial leverage, and a positive association between inside debt holders and the extent of diversification and asset liquidity.

200 citations


Authors

Showing all 17387 results

NameH-indexPapersCitations
Robert M. Califf1961561167961
Hugh A. Sampson14781676492
Stephen Boyd138822151205
Nikhil C. Munshi13490667349
Jian-Guo Bian128121980964
Bart Barlogie12677957803
Robert R. Wolfe12456654000
Daniel B. Mark12457678385
E. Magnus Ohman12462268976
Benoît Roux12049362215
Robert C. Haddon11257752712
Rodney J. Bartlett10970056154
Baoshan Xing10982348944
Gareth J. Morgan109101952957
Josep Dalmau10856849331
Network Information
Related Institutions (5)
Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

95% related

University of Florida
200K papers, 7.1M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202380
2022243
20211,973
20201,889
20191,736
20181,636