scispace - formally typeset
Search or ask a question
Institution

University of Basel

EducationBasel, Basel-Stadt, Switzerland
About: University of Basel is a education organization based out in Basel, Basel-Stadt, Switzerland. It is known for research contribution in the topics: Population & Transplantation. The organization has 25084 authors who have published 52975 publications receiving 2388002 citations. The organization is also known as: Universität Basel & Basel University.


Papers
More filters
Journal ArticleDOI
07 Feb 2017-PLOS ONE
TL;DR: Patients reported more beneficial health behaviours, less symptoms and higher quality of life and to be more satisfied with treatment when they had higher trust in their health care professional when the interplay between trust and health outcomes was found.
Abstract: Objective To examine whether patients’ trust in the health care professional is associated with health outcomes. Study selection We searched 4 major electronic databases for studies that reported quantitative data on the association between trust in the health care professional and health outcome. We screened the full-texts of 400 publications and included 47 studies in our meta-analysis. Data extraction and data synthesis We conducted random effects meta-analyses and meta-regressions and calculated correlation coefficients with corresponding 95% confidence intervals. Two interdependent researchers assessed the quality of the included studies using the Strengthening the Reporting of Observational Studies in Epidemiology guidelines. Results Overall, we found a small to moderate correlation between trust and health outcomes (r = 0.24, 95% CI: 0.19–0.29). Subgroup analyses revealed a moderate correlation between trust and self-rated subjective health outcomes (r = 0.30, 0.24–0.35). Correlations between trust and objective (r = -0.02, -0.08–0.03) as well as observer-rated outcomes (r = 0.10, -0.16–0.36) were non-significant. Exploratory analyses showed a large correlation between trust and patient satisfaction and somewhat smaller correlations with health behaviours, quality of life and symptom severity. Heterogeneity was small to moderate across the analyses. Conclusions From a clinical perspective, patients reported more beneficial health behaviours, less symptoms and higher quality of life and to be more satisfied with treatment when they had higher trust in their health care professional. There was evidence for upward bias in the summarized results. Prospective studies are required to deepen our understanding of the complex interplay between trust and health outcomes.

413 citations

Journal ArticleDOI
TL;DR: The structure of protein, lipid and water molecules in the crystals represents the functional entity of bR in the purple membrane of the bacteria at atomic resolution.

413 citations

Journal ArticleDOI
TL;DR: App-null mice on an App-null background developed a similar degree of both plaques and CAA, providing further evidence that a neuronal source of APP/Abeta is sufficient to induce cerebrovascular amyloid and associated neurodegeneration.
Abstract: Transgenic mice that overexpress mutant human amyloid precursor protein (APP) exhibit one hallmark of Alzheimer’s disease pathology, namely the extracellular deposition of amyloid plaques. Here, we describe significant deposition of amyloid β (Aβ) in the cerebral vasculature [cerebral amyloid angiopathy (CAA)] in aging APP23 mice that had striking similarities to that observed in human aging and Alzheimer’s disease. Amyloid deposition occurred preferentially in arterioles and capillaries and within individual vessels showed a wide heterogeneity (ranging from a thin ring of amyloid in the vessel wall to large plaque-like extrusions into the neuropil). CAA was associated with local neuron loss, synaptic abnormalities, microglial activation, and microhemorrhage. Although several factors may contribute to CAA in humans, the neuronal origin of transgenic APP, high levels of Aβ in cerebrospinal fluid, and regional localization of CAA in APP23 mice suggest transport and drainage pathways rather than local production or blood uptake of Aβ as a primary mechanism underlying cerebrovascular amyloid formation. APP23 mice on an App-null background developed a similar degree of both plaques and CAA, providing further evidence that a neuronal source of APP/Aβ is sufficient to induce cerebrovascular amyloid and associated neurodegeneration.

413 citations

Journal ArticleDOI
TL;DR: It is shown that extracellular serine is required for optimal T-cell expansion even in glucose concentrations sufficient to support T cell activation, bioenergetics, and effector function, and Restricting dietary serine impairs pathogen-driven expansion of T cells in vivo, without affecting overall immune cell homeostasis.

413 citations

Journal ArticleDOI
15 Oct 2009-Nature
TL;DR: This work demonstrates the first experimental realization of such a tunable Cooper pair splitter, which shows a surprisingly high efficiency and opens a route towards a first test of the EPR paradox and Bell inequalities in the solid state.
Abstract: One of the most counterintuitive aspects of quantum mechanics is non-locality, manifesting as spatially separated objects influencing each other in a direct way. Experimental verifications of such concepts have been conducted successfully using entangled pairs of photons to test so-called Bell inequalities, but similar demonstrations using electrons have remained elusive owing to the inherent difficulty of creating and splitting pairs of entangled electrons. Lukas Hofstetter and colleagues now demonstrate that this is possible in a Y-shaped electron entangler consisting of a superconductor at its stem, coupled via tunnelling barriers to two separate quantum dots along the fork-like branches of the device. The entangled pairs of electrons are naturally formed in the superconductor, which in its ground state consists of Cooper pairs of electrons, and split by Coulomb interactions and careful tuning of the energy levels of the quantum dots. The study paves the way for the study of electronic entanglement and experimental tests of Bell inequalities in the solid state. One of the most counterintuitive fundamental properties of quantum mechanics is non-locality, which manifests itself as correlations between spatially separated parts of a quantum system. Although experimental tests of non-locality (Bell inequalities) have been successfully conducted with pairwise entangled photons, similar demonstrations using electrons have so far not been possible. The realization of a Y-shaped tunable Cooper pair splitter, to split entangled electrons on demand, brings this one step closer. Non-locality is a fundamental property of quantum mechanics that manifests itself as correlations between spatially separated parts of a quantum system. A fundamental route for the exploration of such phenomena is the generation of Einstein–Podolsky–Rosen (EPR) pairs1 of quantum-entangled objects for the test of so-called Bell inequalities2. Whereas such experimental tests of non-locality have been successfully conducted with pairwise entangled photons, it has not yet been possible to realize an electronic analogue of it in the solid state, where spin-1/2 mobile electrons are the natural quantum objects3. The difficulty stems from the fact that electrons are immersed in a macroscopic ground state—the Fermi sea—which prevents the straightforward generation and splitting of entangled pairs of electrons on demand. A superconductor, however, could act as a source of EPR pairs of electrons, because its ground-state is composed of Cooper pairs in a spin-singlet state4. These Cooper pairs can be extracted from a superconductor by tunnelling, but, to obtain an efficient EPR source of entangled electrons, the splitting of the Cooper pairs into separate electrons has to be enforced. This can be achieved by having the electrons ‘repel’ each other by Coulomb interaction5. Controlled Cooper pair splitting can thereby be realized by coupling of the superconductor to two normal metal drain contacts by means of individually tunable quantum dots. Here we demonstrate the first experimental realization of such a tunable Cooper pair splitter, which shows a surprisingly high efficiency. Our findings open a route towards a first test of the EPR paradox and Bell inequalities in the solid state.

413 citations


Authors

Showing all 25374 results

NameH-indexPapersCitations
Yang Yang1712644153049
Martin Karplus163831138492
Frank J. Gonzalez160114496971
Paul Emery1581314121293
Matthias Egger152901184176
Don W. Cleveland15244484737
Ashok Kumar1515654164086
Kurt Wüthrich143739103253
Thomas J. Smith1401775113919
Robert Huber13967173557
Peter Robmann135143897569
Ernst Detlef Schulze13367069504
Michael Levine12958655963
Claudio Santoni129102780598
Pablo Garcia-Abia12698978690
Network Information
Related Institutions (5)
Yale University
220.6K papers, 12.8M citations

95% related

Harvard University
530.3K papers, 38.1M citations

95% related

University of Oxford
258.1K papers, 12.9M citations

95% related

University of California, San Diego
204.5K papers, 12.3M citations

94% related

Columbia University
224K papers, 12.8M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023146
2022552
20213,395
20203,227
20192,984
20182,775