scispace - formally typeset
Search or ask a question
Institution

University of Basel

EducationBasel, Basel-Stadt, Switzerland
About: University of Basel is a education organization based out in Basel, Basel-Stadt, Switzerland. It is known for research contribution in the topics: Population & Transplantation. The organization has 25084 authors who have published 52975 publications receiving 2388002 citations. The organization is also known as: Universität Basel & Basel University.


Papers
More filters
Proceedings ArticleDOI
17 Jun 2007
TL;DR: An algorithm using a locally affine regularisation which assigns an affine transformation to each vertex and minimises the difference in the transformation of neighbouring vertices is presented, showing that for this regularisation the optimal deformation for fixed correspondences and fixed stiffness can be determined exactly and efficiently.
Abstract: We show how to extend the ICP framework to nonrigid registration, while retaining the convergence properties of the original algorithm. The resulting optimal step nonrigid ICP framework allows the use of different regularisations, as long as they have an adjustable stiffness parameter. The registration loops over a series of decreasing stiffness weights, and incrementally deforms the template towards the target, recovering the whole range of global and local deformations. To find the optimal deformation for a given stiffness, optimal iterative closest point steps are used. Preliminary correspondences are estimated by a nearest-point search. Then the optimal deformation of the template for these fixed correspondences and the active stiffness is calculated. Afterwards the process continues with new correspondences found by searching from the displaced template vertices. We present an algorithm using a locally affine regularisation which assigns an affine transformation to each vertex and minimises the difference in the transformation of neighbouring vertices. It is shown that for this regularisation the optimal deformation for fixed correspondences and fixed stiffness can be determined exactly and efficiently. The method succeeds for a wide range of initial conditions, and handles missing data robustly. It is compared qualitatively and quantitatively to other algorithms using synthetic examples and real world data.

734 citations

Journal ArticleDOI
Rebecca Sims1, Sven J. van der Lee2, Adam C. Naj3, Céline Bellenguez4  +484 moreInstitutions (120)
TL;DR: Three new genome-wide significant nonsynonymous variants associated with Alzheimer's disease are observed, providing additional evidence that the microglia-mediated innate immune response contributes directly to the development of Alzheimer's Disease.
Abstract: We identified rare coding variants associated with Alzheimer's disease in a three-stage case–control study of 85,133 subjects. In stage 1, we genotyped 34,174 samples using a whole-exome microarray. In stage 2, we tested associated variants (P < 1 × 10−4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, we used an additional 14,997 samples to test the most significant stage 2 associations (P < 5 × 10−8) using imputed genotypes. We observed three new genome-wide significant nonsynonymous variants associated with Alzheimer's disease: a protective variant in PLCG2 (rs72824905: p.Pro522Arg, P = 5.38 × 10−10, odds ratio (OR) = 0.68, minor allele frequency (MAF)cases = 0.0059, MAFcontrols = 0.0093), a risk variant in ABI3 (rs616338: p.Ser209Phe, P = 4.56 × 10−10, OR = 1.43, MAFcases = 0.011, MAFcontrols = 0.008), and a new genome-wide significant variant in TREM2 (rs143332484: p.Arg62His, P = 1.55 × 10−14, OR = 1.67, MAFcases = 0.0143, MAFcontrols = 0.0089), a known susceptibility gene for Alzheimer's disease. These protein-altering changes are in genes highly expressed in microglia and highlight an immune-related protein–protein interaction network enriched for previously identified risk genes in Alzheimer's disease. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to the development of Alzheimer's disease.

730 citations

Journal ArticleDOI
TL;DR: The increased land use intensity was correlated with a decrease in AMF species richness and with a preferential selection of species that colonized roots slowly but formed spores rapidly.
Abstract: The impact of land use intensity on the diversity of arbuscular mycorrhizal fungi (AMF) was investigated at eight sites in the “three-country corner” of France, Germany, and Switzerland. Three sites were low-input, species-rich grasslands. Two sites represented low- to moderate-input farming with a 7-year crop rotation, and three sites represented high-input continuous maize monocropping. Representative soil samples were taken, and the AMF spores present were morphologically identified and counted. The same soil samples also served as inocula for “AMF trap cultures” with Plantago lanceolata, Trifolium pratense, and Lolium perenne. These trap cultures were established in pots in a greenhouse, and AMF root colonization and spore formation were monitored over 8 months. For the field samples, the numbers of AMF spores and species were highest in the grasslands, lower in the low- and moderate-input arable lands, and lowest in the lands with intensive continuous maize monocropping. Some AMF species occurred at all sites (“generalists”); most of them were prevalent in the intensively managed arable lands. Many other species, particularly those forming sporocarps, appeared to be specialists for grasslands. Only a few species were specialized on the arable lands with crop rotation, and only one species was restricted to the high-input maize sites. In the trap culture experiment, the rate of root colonization by AMF was highest with inocula from the permanent grasslands and lowest with those from the high-input monocropping sites. In contrast, AMF spore formation was slowest with the former inocula and fastest with the latter inocula. In conclusion, the increased land use intensity was correlated with a decrease in AMF species richness and with a preferential selection of species that colonized roots slowly but formed spores rapidly.

728 citations

Journal ArticleDOI
TL;DR: OATP-B is the third bromosulphophthalein uptake system localized at the basolateral membrane of human hepatocytes and is the first to be characterized with respect to tissue distribution and hepatocellular localization.

727 citations

Journal ArticleDOI
TL;DR: The methods used to identify autophagy structures, and to measure autophagic flux in cultured cells and animals are reviewed, and the existing Autophagy reporter mice that are useful for autophile studies and drug testing are described.
Abstract: Autophagy is a cytoplasmic degradation system, which is important for starvation adaptation and cellular quality control. Recent advances in understanding autophagy highlight its importance under physiological and pathological conditions. However, methods for monitoring autophagic activity are complicated and the results are sometimes misinterpreted. Here, we review the methods used to identify autophagic structures, and to measure autophagic flux in cultured cells and animals. We will also describe the existing autophagy reporter mice that are useful for autophagy studies and drug testing. Lastly, we will consider the attempts to monitor autophagy in samples derived from humans.

726 citations


Authors

Showing all 25374 results

NameH-indexPapersCitations
Yang Yang1712644153049
Martin Karplus163831138492
Frank J. Gonzalez160114496971
Paul Emery1581314121293
Matthias Egger152901184176
Don W. Cleveland15244484737
Ashok Kumar1515654164086
Kurt Wüthrich143739103253
Thomas J. Smith1401775113919
Robert Huber13967173557
Peter Robmann135143897569
Ernst Detlef Schulze13367069504
Michael Levine12958655963
Claudio Santoni129102780598
Pablo Garcia-Abia12698978690
Network Information
Related Institutions (5)
Yale University
220.6K papers, 12.8M citations

95% related

Harvard University
530.3K papers, 38.1M citations

95% related

University of Oxford
258.1K papers, 12.9M citations

95% related

University of California, San Diego
204.5K papers, 12.3M citations

94% related

Columbia University
224K papers, 12.8M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023146
2022552
20213,395
20203,227
20192,984
20182,775