scispace - formally typeset
Search or ask a question
Institution

University of Basel

EducationBasel, Basel-Stadt, Switzerland
About: University of Basel is a education organization based out in Basel, Basel-Stadt, Switzerland. It is known for research contribution in the topics: Population & Transplantation. The organization has 25084 authors who have published 52975 publications receiving 2388002 citations. The organization is also known as: Universität Basel & Basel University.


Papers
More filters
Journal ArticleDOI
TL;DR: Converging findings show that when people make decisions based on experience, rare events tend to have less impact than they deserve according to their objective probabilities.

726 citations

Journal ArticleDOI
TL;DR: Protein molecules in solution or in protein crystals are characterized by rather well-defined structures in which α-helical regions, β-pleated sheets, etc., are the key features, and the double helix of nucleic acids has almost become the trademark of molecular biology as such.
Abstract: Protein molecules in solution or in protein crystals are characterized by rather well-defined structures in which α-helical regions, β-pleated sheets, etc., are the key features. Likewise, the double helix of nucleic acids has almost become the trademark of molecular biology as such. By contrast, the structural analysis of lipids has progressed at a relatively slow pace. The early X-ray diffraction studies by V. Luzzati and others firmly established the fact that the lipids in biological membranes are predominantly organized in bilayer structures (Luzzati, 1968). V. Luzzati was also the first to emphasize the liquid-like conformation of the hydrocarbon chains, similar to that of a liquid paraffin, yet with the average orientation of the chains perpendicular to the lipid–water interface. This liquid–crystalline bilayer is generally observed in lipid–water systems at sufficiently high temperature and water content, as well as in intact biological membranes under physiological conditions (Luzzati & Husson, 1962; Luzzati, 1968; Tardieu, Luzzati & Reman, 1973; Engelman, 1971; Shipley, 1973). In combination with thermodynamic and other spectroscopic observations these investigations culminated in the formulation of the fluid mosaic model of biological membranes (cf. Singer, 1971). However, within the limits of this model the exact nature of lipid conformation and dynamics was immaterial, the lipids were simply pictured as circles with two squiggly lines representing the polar head group and the fatty acyl chains, respectively. No attempt was made to incorporate the well-established chemical structure into this picture. Similarly, membrane proteins were visualized as smooth rotational ellipsoids disregarding the possibility that protruding amino acid side-chains and irregularities of the backbone folding may create a rather rugged protein surface.

723 citations

Journal ArticleDOI
TL;DR: In this paper, the authors find that people with longer commuting time report systematically lower subjective well-being than those with shorter commutes, and they mention several possibilities of an extended model of human behavior able to explain this "commuting paradox".
Abstract: People spend a lot of time commuting and often find it a burden. According to standard economics, the burden of commuting is chosen when compensated either on the labor or on the housing market so that individuals’ utility is equalized. However, in a direct test of this strong notion of equilibrium with panel data, we find that people with longer commuting time report systematically lower subjective well-being. This result is robust with regard to a number of alternative explanations. We mention several possibilities of an extended model of human behavior able to explain this “commuting paradox”.

723 citations

Journal ArticleDOI
Derrek P. Hibar1, Jason L. Stein1, Jason L. Stein2, Miguel E. Rentería3  +341 moreInstitutions (93)
09 Apr 2015-Nature
TL;DR: In this paper, the authors conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts.
Abstract: The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

721 citations

Journal ArticleDOI
TL;DR: The current state of knowledge on the structure, assembly, and possible functional roles of nuclear lamins is summarized, emphasizing the information concerning the ability ofnuclear lamins to self-assemble into distinct oligomers and polymers.

720 citations


Authors

Showing all 25374 results

NameH-indexPapersCitations
Yang Yang1712644153049
Martin Karplus163831138492
Frank J. Gonzalez160114496971
Paul Emery1581314121293
Matthias Egger152901184176
Don W. Cleveland15244484737
Ashok Kumar1515654164086
Kurt Wüthrich143739103253
Thomas J. Smith1401775113919
Robert Huber13967173557
Peter Robmann135143897569
Ernst Detlef Schulze13367069504
Michael Levine12958655963
Claudio Santoni129102780598
Pablo Garcia-Abia12698978690
Network Information
Related Institutions (5)
Yale University
220.6K papers, 12.8M citations

95% related

Harvard University
530.3K papers, 38.1M citations

95% related

University of Oxford
258.1K papers, 12.9M citations

95% related

University of California, San Diego
204.5K papers, 12.3M citations

94% related

Columbia University
224K papers, 12.8M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023146
2022552
20213,395
20203,227
20192,984
20182,775