scispace - formally typeset
Search or ask a question
Institution

University of Bath

EducationBath, Bath and North East Somerset, United Kingdom
About: University of Bath is a education organization based out in Bath, Bath and North East Somerset, United Kingdom. It is known for research contribution in the topics: Population & Photonic-crystal fiber. The organization has 15830 authors who have published 39608 publications receiving 1358769 citations. The organization is also known as: Bath University.


Papers
More filters
Journal ArticleDOI
TL;DR: The PEIS analysis shows that the limiting factor determining the performance of the α-Fe(2)O(3) photoanode is electron-hole recombination in the bulk of the oxide, and the phenomenological rate constant for electron transfer was found to increase with potential.
Abstract: Photoelectrochemical Impedance Spectroscopy (PEIS) has been used to characterize the kinetics of electron transfer and recombination taking place during oxygen evolution at illuminated polycrystalline α-Fe2O3 electrodes prepared by aerosol-assisted chemical vapour deposition from a ferrocene precursor. The PEIS results were analysed using a phenomenological approach since the mechanism of the oxygen evolution reaction is not known a priori. The results indicate that the photocurrent onset potential is strongly affected by Fermi level pinning since the rate constant for surface recombination is almost constant in this potential region. The phenomenological rate constant for electron transfer was found to increase with potential, suggesting that the potential drop in the Helmholtz layer influences the activation energy for the oxygen evolution process. The PEIS analysis also shows that the limiting factor determining the performance of the α-Fe2O3 photoanode is electron–hole recombination in the bulk of the oxide.

239 citations

Journal ArticleDOI
TL;DR: Comparison of different forms of commercial power generation by use of the fuel cycle methods developed in European studies shows the health burdens to be greatest for power stations that most pollute outdoor air, and lower still for nuclear power.

239 citations

Journal ArticleDOI
TL;DR: This paper reviews the standard definitions of verification and validation in the context of engineering design and progresses to provide a coherent analysis and classification of these activities from preliminary design, to design in the digital domain and the physical verification and validate of products and processes.

239 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a review and systemisation of the research carried out in the field of manufacturing co-evolution with a particular focus on production systems, and a description of problems that remain unsolved, thus motivating future research strategies and roadmaps.
Abstract: Manufacturing enterprises are changing the way they behave in the market to face the increasing complexity of the economic, socio-political and technological dynamics. Manufacturing products, processes and production systems result in being challenged by evolving external drivers, including the introduction of new regulations, new materials, technologies, services and communications, the pressure on costs and sustainability. The co-evolution paradigm synthesises the recent scientific and technical approaches proposed by academic and industrial communities dealing with methodologies and tools to support the coordinated evolution (co-evolution) of products, processes and production systems. This paper aims at reviewing and systemising the research carried out in the field of manufacturing co-evolution with a particular focus on production systems. An introductory investigation of various industrial perspectives on the problem of co-evolution is presented, followed by the description of the co-evolution model and the methodology adopted for framing the existing scientific contributions in the proposed model. Then, the core part of the work is presented, consisting in a systemised analysis of the current methodologies dealing with co-evolving product, process and system and a description of problems that remain unsolved, thus motivating future research strategies and roadmaps.

239 citations

Journal ArticleDOI
TL;DR: Low-dose exposures to common environmental chemicals that are deemed safe individually may be combining to instigate carcinogenesis, thereby contributing to the incidence of cancer.
Abstract: Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology.

238 citations


Authors

Showing all 16056 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Brenda W.J.H. Penninx1701139119082
Amartya Sen149689141907
Gilbert Laporte12873062608
Andre K. Geim125445206833
Matthew Jones125116196909
Benoît Roux12049362215
Stephen Mann12066955008
Bruno S. Frey11990065368
Raymond A. Dwek11860352259
David Cutts11477864215
John Campbell107115056067
David Chandler10742452396
Peter H.R. Green10684360113
Huajian Gao10566746748
Network Information
Related Institutions (5)
University of Manchester
168K papers, 6.4M citations

96% related

University of Bristol
113.1K papers, 4.9M citations

94% related

National University of Singapore
165.4K papers, 5.4M citations

94% related

University of Oxford
258.1K papers, 12.9M citations

94% related

University of Cambridge
282.2K papers, 14.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202386
2022404
20212,474
20202,371
20192,144
20181,972