scispace - formally typeset
Search or ask a question
Institution

University of Bordeaux

EducationBordeaux, France
About: University of Bordeaux is a education organization based out in Bordeaux, France. It is known for research contribution in the topics: Population & Laser. The organization has 28811 authors who have published 55536 publications receiving 1619635 citations. The organization is also known as: UB.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, high resolution benthic δ 18 O and δ 13 C records from North Atlantic sediment cores were used to monitor the impact of Heinrich events on thermohaline circulation and to estimate the sensitivity of deep oceanic circulation to changes in freshwater input to the North Atlantic surface waters.

328 citations

Journal ArticleDOI
TL;DR: In this article, surface sediments and mussels, Mytilus edulis, collected in the Baltic Sea in March 1995, October 1995 and August 1996 have been analyzed for polycyclic aromatic hydrocarbon (PAH) content.

327 citations

Journal ArticleDOI
TL;DR: A general overview of the helicase/G-quadruplex field is presented and it is suggested that proteins may have evolved to remove these structures from genomic DNA.
Abstract: Guanine-rich DNA strands can fold in vitro into non-canonical DNA structures called G-quadruplexes. These structures may be very stable under physiological conditions. Evidence suggests that G-quadruplex structures may act as 'knots' within genomic DNA, and it has been hypothesized that proteins may have evolved to remove these structures. The first indication of how G-quadruplex structures could be unfolded enzymatically came in the late 1990s with reports that some well-known duplex DNA helicases resolved these structures in vitro. Since then, the number of studies reporting G-quadruplex DNA unfolding by helicase enzymes has rapidly increased. The present review aims to present a general overview of the helicase/G-quadruplex field.

327 citations

Journal ArticleDOI
TL;DR: Data point to synthesis of fatty acids and supply of pyruvate in the plastid, rather than acyl assembly into triacylglycerol, as a major control over the storage of oil in the mesocarp of oil palm.
Abstract: Oil palm can accumulate up to 90% oil in its mesocarp, the highest level observed in the plant kingdom. In contrast, the closely related date palm accumulates almost exclusively sugars. To gain insight into the mechanisms that lead to such an extreme difference in carbon partitioning, the transcriptome and metabolite content of oil palm and date palm were compared during mesocarp development. Compared with date palm, the high oil content in oil palm was associated with much higher transcript levels for all fatty acid synthesis enzymes, specific plastid transporters, and key enzymes of plastidial carbon metabolism, including phosphofructokinase, pyruvate kinase, and pyruvate dehydrogenase. Transcripts representing an ortholog of the WRI1 transcription factor were 57-fold higher in oil palm relative to date palm and displayed a temporal pattern similar to its target genes. Unexpectedly, despite more than a 100-fold difference in flux to lipids, most enzymes of triacylglycerol assembly were expressed at similar levels in oil palm and date palm. Similarly, transcript levels for all but one cytosolic enzyme of glycolysis were comparable in both species. Together, these data point to synthesis of fatty acids and supply of pyruvate in the plastid, rather than acyl assembly into triacylglycerol, as a major control over the storage of oil in the mesocarp of oil palm. In addition to greatly increasing molecular resources devoted to oil palm and date palm, the combination of temporal and comparative studies illustrates how deep sequencing can provide insights into gene expression patterns of two species that lack genome sequence information.

326 citations

Journal ArticleDOI
TL;DR: In this article, the conformational equilibrium between the transoid and cisoid rotamers is illustrated from the infrared spectra of solutions of LiTFSI in aprotic solvents.
Abstract: Ab initio calculations were combined with infrared and Raman studies to distinguish spectroscopically the two conformers of the bis(trifluoromethanesulfonyl)imide anion, (TFSI−). Spectra of crystalline LiTFSI complexes with organic ligands, where the anion adopts a known conformational state, are presented to confirm the calculated spectra. Several regions are identified where either the infrared or the Raman spectra contain separate bands for the two conformers. The conformational equilibrium between the transoid and cisoid rotamers is then illustrated from the infrared spectra of solutions of LiTFSI in aprotic solvents. The transoid form is found to be more stable than the cisoid form by about 2.2 kJ mol−1, in good agreement with the present and earlier theoretical predictions. It is also shown that the IR and Raman spectral changes coming from conformational isomerism have to be carefully distinguished from those due to ionic interactions. Copyright © 2005 John Wiley & Sons, Ltd.

326 citations


Authors

Showing all 28995 results

NameH-indexPapersCitations
Nicholas G. Martin1921770161952
George F. Koob171935112521
Daniel J. Jacob16265676530
Arthur W. Toga1591184109343
James M. Tour14385991364
Floyd E. Bloom13961672641
Herbert Y. Meltzer137114881371
Jean-Marie Tarascon136853137673
Stanley Nattel13277865700
Michel Haïssaguerre11775762284
Liquan Chen11168944229
Marion Leboyer11077350767
Jean-François Dartigues10663146682
Alexa S. Beiser10636647457
Robert Dantzer10549746554
Network Information
Related Institutions (5)
University of Paris
174.1K papers, 5M citations

97% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

97% related

Pierre-and-Marie-Curie University
56.1K papers, 2.3M citations

97% related

École Normale Supérieure
99.4K papers, 3M citations

95% related

Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202378
2022393
20213,110
20203,362
20193,245
20183,143