scispace - formally typeset
Search or ask a question
Institution

University of Bordeaux

EducationBordeaux, France
About: University of Bordeaux is a education organization based out in Bordeaux, France. It is known for research contribution in the topics: Population & Laser. The organization has 28811 authors who have published 55536 publications receiving 1619635 citations. The organization is also known as: UB.


Papers
More filters
Journal ArticleDOI
TL;DR: The ability of these copolymers to self-assemble into small vesicles suggests the possibility of a new generation of drug- and gene-delivery systems whose structure mimics that of viruses.
Abstract: Natural inspiration: Amphiphilic polysaccharide-block-polypeptide copolymers were synthesized by click chemistry from dextran end-functionalized with an alkyne group and poly(gamma-benzyl L-glutamate) end-functionalized with an azide group. The ability of these copolymers to self-assemble into small vesicles (see picture) suggests the possibility of a new generation of drug- and gene-delivery systems whose structure mimics that of viruses.

268 citations

Journal ArticleDOI
TL;DR: In this paper, the authors highlight how supercritical fluid technology applied to materials processing can play a great role in materials science, and how these operating parameters influence the properties of the material, and therefore their applications in numerous technologically important fields such as energy, chemistry, electronics, optics and pharmacology.
Abstract: This review paper highlights how supercritical fluid technology applied to materials processing can play a great role in materials science. It is shown that this way of materials processing offers the possibility of controlling the synthesis by varying operating parameters. Understanding how each parameter influences the synthesis process allows one to control the characteristics of the material, in terms of size, morphology, structure and composition. It is equally shown how these operating parameters influence the properties of the material, and therefore their applications in numerous technologically important fields such as energy, chemistry, electronics, optics and pharmacology.

268 citations

Journal ArticleDOI
TL;DR: Using a combination of specific antisera to these peptides and transgenic fly models, it was shown that the endocrine cells in the adult Drosophila midgut produced exclusively NPF.
Abstract: Regulatory peptides were immunolocalized in the midgut of the fruit fly Drosophila melanogaster. Endocrine cells were found to produce six different peptides: allatostatins A, B and C, neuropeptide F, diuretic hormone 31, and the tachykinins. Small neuropeptide-F (sNPF) was found in neurons in the hypocerebral ganglion innervating the anterior midgut, whereas pigment-dispersing factor was found in nerves on the most posterior part of the posterior midgut. Neuropeptide-F (NPF)-producing endocrine cells were located in the anterior and middle midgut and in the very first part of the posterior midgut. All NPF endocrine cells also produced tachykinins. Endocrine cells containing diuretic hormone 31 were found in the caudal half of the posterior midgut; these cells also produced tachykinins. Other endocrine cells produced exclusively tachykinins in the anterior and posterior extemities of the midgut. Allatostatin-immunoreactive endocrine cells were present throughout the midgut. Those in the caudal half of the posterior midgut produced allatostatins A, whereas those in the anterior, middle, and first half of the posterior midgut produced allatostatin C. In the middle of the posterior midgut, some endocrine cells produced both allatostatins A and C. Allatostatin-C-immunoreactive endocrine cells were particularly prominent in the first half of the posterior midgut. Allatostatin B/MIP-immunoreactive cells were not consistently found and, when present, were only weakly immunoreactive, forming a subgroup of the allatostatin-C-immunoreactive cells in the posterior midgut. Previous work on Drosophila and other insect species suggested that (FM)RFamide-immunoreactive endocrine cells in the insect midgut could produce NPF, sNPF, myosuppressin, and/or sulfakinins. Using a combination of specific antisera to these peptides and transgenic fly models, we showed that the endocrine cells in the adult Drosophila midgut produced exclusively NPF. Although the Drosophila insulin gene Ilp3 was abundantly expressed in the midgut, Ilp3 was not expressed in endocrine cells, but in midgut muscle.

268 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the acceleration of ions from ultrathin foils irradiated by intense circularly polarized laser pulses using one-and two-dimensional particle simulations and provided insights on how to control the energy, number, and energy spread of accelerated ions.
Abstract: Acceleration of ions from ultrathin foils irradiated by intense circularly polarized laser pulses is investigated using one- and two-dimensional particle simulations. A circularly polarized laser wave heats the electrons much less efficiently than the wave of linear polarization and the ion acceleration process takes place on the front side of the foil. The ballistic evolution of the foil becomes important after all ions contained in the foil have been accelerated. In the ongoing acceleration process, the whole foil is accelerated as a dense compact bunch of quasineutral plasma implying that the energy spectrum of ions is quasimonoenergetic. Because of the ballistic evolution, the velocity spread of an accelerated ion beam is conserved while the average velocity of ions may be further increased. This offers the possibility to control the parameters of the accelerated ion beam. The ion acceleration process is described by the momentum transfer from the laser beam to the foil and it might be fairly efficient in terms of the energy transferred to the heavy ions even if the foil contains a comparable number of light ions or some surface contaminants. Two-dimensional simulations confirm the formation of the quasimonoenergetic spectrum of ions and relatively good collimation of the ion bunch, however the spatial distribution of the laser intensity poses constraints on the maximum velocity of the ion beam. The present ion acceleration mechanism might be suitable for obtaining a dense high energy beam of quasimonoenergetic heavy ions which can be subsequently applied in nuclear physics experiments. Our simulations are complemented by a simple theoretical model which provides the insights on how to control the energy, number, and energy spread of accelerated ions.

267 citations

Journal ArticleDOI
TL;DR: A new class of locally resonant ultrasonic metafluids consisting of a concentrated suspension of macroporous microbeads engineered using soft-matter techniques is reported, which open the way for key applications such as sub-wavelength imaging and transformation acoustics, which require the production of acoustic devices with negative or zero-valued indices.
Abstract: Many efforts have been devoted to the design and achievement of negative-refractive-index metamaterials since the 2000s1, 2, 3, 4, 5, 6, 7, 8. One of the challenges at present is to extend that field beyond electromagnetism by realizing three-dimensional (3D) media with negative acoustic indices9. We report a new class of locally resonant ultrasonic metafluids consisting of a concentrated suspension of macroporous microbeads engineered using soft-matter techniques. The propagation of Gaussian pulses within these random distributions of ‘ultra-slow’ Mie resonators is investigated through in situ ultrasonic experiments. The real part of the acoustic index is shown to be negative (up to almost − 1) over broad frequency bandwidths, depending on the volume fraction of the microbeads as predicted by multiple-scattering calculations. These soft 3D acoustic metamaterials open the way for key applications such as sub-wavelength imaging and transformation acoustics, which require the production of acoustic devices with negative or zero-valued indices.

267 citations


Authors

Showing all 28995 results

NameH-indexPapersCitations
Nicholas G. Martin1921770161952
George F. Koob171935112521
Daniel J. Jacob16265676530
Arthur W. Toga1591184109343
James M. Tour14385991364
Floyd E. Bloom13961672641
Herbert Y. Meltzer137114881371
Jean-Marie Tarascon136853137673
Stanley Nattel13277865700
Michel Haïssaguerre11775762284
Liquan Chen11168944229
Marion Leboyer11077350767
Jean-François Dartigues10663146682
Alexa S. Beiser10636647457
Robert Dantzer10549746554
Network Information
Related Institutions (5)
University of Paris
174.1K papers, 5M citations

97% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

97% related

Pierre-and-Marie-Curie University
56.1K papers, 2.3M citations

97% related

École Normale Supérieure
99.4K papers, 3M citations

95% related

Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202378
2022393
20213,110
20203,362
20193,245
20183,143