Institution
University of Bremen
Education•Bremen, Germany•
About: University of Bremen is a(n) education organization based out in Bremen, Germany. It is known for research contribution in the topic(s): Population & Glacial period. The organization has 14563 authors who have published 37279 publication(s) receiving 970381 citation(s). The organization is also known as: Universität Bremen.
Topics: Population, Glacial period, SCIAMACHY, Sea ice, Holocene
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: Attention is focussed on the ROS/RNS-linked pathogenesis of cancer, cardiovascular disease, atherosclerosis, hypertension, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases, rheumatoid arthritis, and ageing.
Abstract: Reactive oxygen species (ROS) and reactive nitrogen species (RNS, e.g. nitric oxide, NO(*)) are well recognised for playing a dual role as both deleterious and beneficial species. ROS and RNS are normally generated by tightly regulated enzymes, such as NO synthase (NOS) and NAD(P)H oxidase isoforms, respectively. Overproduction of ROS (arising either from mitochondrial electron-transport chain or excessive stimulation of NAD(P)H) results in oxidative stress, a deleterious process that can be an important mediator of damage to cell structures, including lipids and membranes, proteins, and DNA. In contrast, beneficial effects of ROS/RNS (e.g. superoxide radical and nitric oxide) occur at low/moderate concentrations and involve physiological roles in cellular responses to noxia, as for example in defence against infectious agents, in the function of a number of cellular signalling pathways, and the induction of a mitogenic response. Ironically, various ROS-mediated actions in fact protect cells against ROS-induced oxidative stress and re-establish or maintain "redox balance" termed also "redox homeostasis". The "two-faced" character of ROS is clearly substantiated. For example, a growing body of evidence shows that ROS within cells act as secondary messengers in intracellular signalling cascades which induce and maintain the oncogenic phenotype of cancer cells, however, ROS can also induce cellular senescence and apoptosis and can therefore function as anti-tumourigenic species. This review will describe the: (i) chemistry and biochemistry of ROS/RNS and sources of free radical generation; (ii) damage to DNA, to proteins, and to lipids by free radicals; (iii) role of antioxidants (e.g. glutathione) in the maintenance of cellular "redox homeostasis"; (iv) overview of ROS-induced signaling pathways; (v) role of ROS in redox regulation of normal physiological functions, as well as (vi) role of ROS in pathophysiological implications of altered redox regulation (human diseases and ageing). Attention is focussed on the ROS/RNS-linked pathogenesis of cancer, cardiovascular disease, atherosclerosis, hypertension, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases (Alzheimer's disease and Parkinson's disease), rheumatoid arthritis, and ageing. Topics of current debate are also reviewed such as the question whether excessive formation of free radicals is a primary cause or a downstream consequence of tissue injury.
10,980 citations
[...]
TL;DR: In this paper, the authors consider the problem of comparing complex hierarchical models in which the number of parameters is not clearly defined and derive a measure pD for the effective number in a model as the difference between the posterior mean of the deviances and the deviance at the posterior means of the parameters of interest, which is related to other information criteria and has an approximate decision theoretic justification.
Abstract: Summary. We consider the problem of comparing complex hierarchical models in which the number of parameters is not clearly defined. Using an information theoretic argument we derive a measure pD for the effective number of parameters in a model as the difference between the posterior mean of the deviance and the deviance at the posterior means of the parameters of interest. In general pD approximately corresponds to the trace of the product of Fisher's information and the posterior covariance, which in normal models is the trace of the ‘hat’ matrix projecting observations onto fitted values. Its properties in exponential families are explored. The posterior mean deviance is suggested as a Bayesian measure of fit or adequacy, and the contributions of individual observations to the fit and complexity can give rise to a diagnostic plot of deviance residuals against leverages. Adding pD to the posterior mean deviance gives a deviance information criterion for comparing models, which is related to other information criteria and has an approximate decision theoretic justification. The procedure is illustrated in some examples, and comparisons are drawn with alternative Bayesian and classical proposals. Throughout it is emphasized that the quantities required are trivial to compute in a Markov chain Monte Carlo analysis.
10,825 citations
[...]
TL;DR: Probing the various interfaces of nanoparticle/biological interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings.
Abstract: Rapid growth in nanotechnology is increasing the likelihood of engineered nanomaterials coming into contact with humans and the environment. Nanoparticles interacting with proteins, membranes, cells, DNA and organelles establish a series of nanoparticle/biological interfaces that depend on colloidal forces as well as dynamic biophysicochemical interactions. These interactions lead to the formation of protein coronas, particle wrapping, intracellular uptake and biocatalytic processes that could have biocompatible or bioadverse outcomes. For their part, the biomolecules may induce phase transformations, free energy releases, restructuring and dissolution at the nanomaterial surface. Probing these various interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings. This knowledge is important from the perspective of safe use of nanomaterials.
5,470 citations
[...]
TL;DR: The R*-tree is designed which incorporates a combined optimization of area, margin and overlap of each enclosing rectangle in the directory which clearly outperforms the existing R-tree variants.
Abstract: The R-tree, one of the most popular access methods for rectangles, is based on the heuristic optimization of the area of the enclosing rectangle in each inner node. By running numerous experiments in a standardized testbed under highly varying data, queries and operations, we were able to design the R*-tree which incorporates a combined optimization of area, margin and overlap of each enclosing rectangle in the directory. Using our standardized testbed in an exhaustive performance comparison, it turned out that the R*-tree clearly outperforms the existing R-tree variants. Guttman's linear and quadratic R-tree and Greene's variant of the R-tree. This superiority of the R*-tree holds for different types of queries and operations, such as map overlay, for both rectangles and multidimensional points in all experiments. From a practical point of view the R*-tree is very attractive because of the following two reasons 1 it efficiently supports point and spatial data at the same time and 2 its implementation cost is only slightly higher than that of other R-trees.
4,570 citations
Authors
Showing all 14563 results
Name | H-index | Papers | Citations |
---|---|---|---|
Roger Y. Tsien | 163 | 441 | 138267 |
Klaus-Robert Müller | 129 | 764 | 79391 |
Ron Kikinis | 126 | 684 | 63398 |
Ulrich S. Schubert | 122 | 2229 | 85604 |
Andreas Richter | 110 | 769 | 48262 |
Michael Böhm | 108 | 755 | 66103 |
Juan Bisquert | 107 | 450 | 46267 |
John P. Sumpter | 101 | 266 | 46184 |
Jos Lelieveld | 100 | 570 | 37657 |
Michael Schulz | 100 | 759 | 50719 |
Peter Singer | 94 | 702 | 37128 |
Charles R. Tyler | 92 | 325 | 31724 |
John P. Burrows | 90 | 815 | 36169 |
Hans-Peter Kriegel | 89 | 444 | 73932 |
Harald Haas | 85 | 750 | 34927 |