scispace - formally typeset
Search or ask a question

Showing papers by "University of Bremen published in 2008"


Journal ArticleDOI
01 Oct 2008-ACS Nano
TL;DR: The results demonstrate that metal oxide nanoparticles induce a range of biological responses that vary from cytotoxic to cytoprotective and can only be properly understood by using a tiered test strategy such as that developed for oxidative stress and adapted to study other aspects of nanoparticle toxicity.
Abstract: Nanomaterials (NM) exhibit novel physicochemical properties that determine their interaction with biological substrates and processes. Three metal oxide nanoparticles that are currently being produced in high tonnage, TiO2, ZnO, and CeO2, were synthesized by flame spray pyrolysis process and compared in a mechanistic study to elucidate the physicochemical characteristics that determine cellular uptake, subcellular localization, and toxic effects based on a test paradigm that was originally developed for oxidative stress and cytotoxicity in RAW 264.7 and BEAS-2B cell lines. ZnO induced toxicity in both cells, leading to the generation of reactive oxygen species (ROS), oxidant injury, excitation of inflammation, and cell death. Using ICP-MS and fluorescent-labeled ZnO, it is found that ZnO dissolution could happen in culture medium and endosomes. Nondissolved ZnO nanoparticles enter caveolae in BEAS-2B but enter lysosomes in RAW 264.7 cells in which smaller particle remnants dissolve. In contrast, fluoresce...

2,206 citations


Journal ArticleDOI
TL;DR: The surface properties of ENPs are of essential importance for their aggregation behavior, and thus for their mobility in aquatic and terrestrial systems and for their interactions with algae, plants and, fungi as mentioned in this paper.
Abstract: Developments in nanotechnology are leading to a rapid proliferation of new materials that are likely to become a source of engineered nanoparticles (ENPs) to the environment, where their possible ecotoxicological impacts remain unknown. The surface properties of ENPs are of essential importance for their aggregation behavior, and thus for their mobility in aquatic and terrestrial systems and for their interactions with algae, plants and, fungi. Interactions of ENPs with natural organic matter have to be considered as well, as those will alter the ENPs aggregation behavior in surface waters or in soils. Cells of plants, algae, and fungi possess cell walls that constitute a primary site for interaction and a barrier for the entrance of ENPs. Mechanisms allowing ENPs to pass through cell walls and membranes are as yet poorly understood. Inside cells, ENPs might directly provoke alterations of membranes and other cell structures and molecules, as well as protective mechanisms. Indirect effects of ENPs depend on their chemical and physical properties and may include physical restraints (clogging effects), solubilization of toxic ENP compounds, or production of reactive oxygen species. Many questions regarding the bioavailability of ENPs, their uptake by algae, plants, and fungi and the toxicity mechanisms remain to be elucidated.

1,548 citations


Journal ArticleDOI
03 Apr 2008-Nature
TL;DR: The results provide compelling evidence of a locus at 15q25 predisposing to lung cancer, and reinforce interest in nicotinic acetylcholine receptors as potential disease candidates and chemopreventative targets.
Abstract: Lung cancer is the most common cause of cancer death worldwide, with over one million cases annually. To identify genetic factors that modify disease risk, we conducted a genome-wide association study by analysing 317,139 single-nucleotide polymorphisms in 1,989 lung cancer cases and 2,625 controls from six central European countries. We identified a locus in chromosome region 15q25 that was strongly associated with lung cancer (P = 9 x 10(-10)). This locus was replicated in five separate lung cancer studies comprising an additional 2,513 lung cancer cases and 4,752 controls (P = 5 x 10(-20) overall), and it was found to account for 14% (attributable risk) of lung cancer cases. Statistically similar risks were observed irrespective of smoking status or propensity to smoke tobacco. The association region contains several genes, including three that encode nicotinic acetylcholine receptor subunits (CHRNA5, CHRNA3 and CHRNB4). Such subunits are expressed in neurons and other tissues, in particular alveolar epithelial cells, pulmonary neuroendocrine cells and lung cancer cell lines, and they bind to N'-nitrosonornicotine and potential lung carcinogens. A non-synonymous variant of CHRNA5 that induces an amino acid substitution (D398N) at a highly conserved site in the second intracellular loop of the protein is among the markers with the strongest disease associations. Our results provide compelling evidence of a locus at 15q25 predisposing to lung cancer, and reinforce interest in nicotinic acetylcholine receptors as potential disease candidates and chemopreventative targets.

1,226 citations


Journal ArticleDOI
TL;DR: In this article, the authors used the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) to estimate sea ice concentration from the channels near 90 GHz, despite the enhanced atmospheric influence in these channels.
Abstract: [1] Recent progress in sea ice concentration remote sensing by satellite microwave radiometers has been stimulated by two developments: First, the new sensor Advanced Microwave Scanning Radiometer-EOS (AMSR-E) offers spatial resolutions of approximately 6 × 4 km at 89 GHz, nearly 3 times the resolution of the standard sensor SSM/I at 85 GHz (15 × 13 km). Second, a new algorithm enables estimation of sea ice concentration from the channels near 90 GHz, despite the enhanced atmospheric influence in these channels. This allows full exploitation of their horizontal resolution, which is up to 4 times finer than that of the channels near 19 and 37 GHz, the frequencies used by the most widespread algorithms for sea ice retrieval, the NASA-Team and Bootstrap algorithms. The ASI algorithm used combines a model for retrieving the sea ice concentration from SSM/I 85-GHz data proposed by Svendsen et al. (1987) with an ocean mask derived from the 18-, 23-, and 37-GHz AMSR-E data using weather filters. During two ship campaigns, the correlation of ASI, NASA-Team 2, and Bootstrap algorithms ice concentrations with bridge observations were 0.80, 0.79, and 0.81, respectively. Systematic differences over the complete AMSR-E period (2002–2006) between ASI and NASA-Team 2 are below −2 ± 8.8%, and between ASI and Bootstrap are 1.7 ± 10.8%. Among the geophysical implications of the ASI algorithm are: (1) Its higher spatial resolution allows better estimation of crucial variables in numerical atmospheric and ocean models, for example, the heat flux between ocean and atmosphere, especially near coastlines and in polynyas. (2) It provides an additional time series of ice area and extent for climate studies.

1,105 citations


Journal ArticleDOI
TL;DR: In general, metal genotoxicity is caused by indirect mechanisms, but specific metal compounds exhibit unique mechanisms such as interruption of cell–cell adhesion by cadmium, direct DNA binding of trivalent chromium, and interaction of vanadate with phosphate binding sites of protein phosphatases.
Abstract: Mechanisms of carcinogenicity are discussed for metals and their compounds, classified as carcinogenic to humans or considered to be carcinogenic to humans: arsenic, antimony, beryllium, cadmium, chromium, cobalt, lead, nickel and vanadium. Physicochemical properties govern uptake, intracellular distribution and binding of metal compounds. Interactions with proteins (e.g., with zinc finger structures) appear to be more relevant for metal carcinogenicity than binding to DNA. In general, metal genotoxicity is caused by indirect mechanisms. In spite of diverse physicochemical properties of metal compounds, three predominant mechanisms emerge: (1) interference with cellular redox regulation and induction of oxidative stress, which may cause oxidative DNA damage or trigger signaling cascades leading to stimulation of cell growth; (2) inhibition of major DNA repair systems resulting in genomic instability and accumulation of critical mutations; (3) deregulation of cell proliferation by induction of signaling pathways or inactivation of growth controls such as tumor suppressor genes. In addition, specific metal compounds exhibit unique mechanisms such as interruption of cell-cell adhesion by cadmium, direct DNA binding of trivalent chromium, and interaction of vanadate with phosphate binding sites of protein phosphatases.

1,014 citations


Journal ArticleDOI
TL;DR: In this article, the authors evaluate how relevant recalcitrance is for the long-term stabilization of soil organic matter (SOM) or its fractions, based on a critical overview of available methods and on results from a cooperative research program.
Abstract: Traditionally, the selective preservation of certain recalcitrant organic compounds and the formation of recalcitrant humic substances have been regarded as an important mechanism for soil organic matter (SOM) stabilization. Based on a critical overview of available methods and on results from a cooperative research program, this paper evaluates how relevant recalcitrance is for the long-term stabilization of SOM or its fractions. Methodologically, recalcitrance is difficult to assess, since the persistence of certain SOM fractions or specific compounds may also be caused by other stabilization mechanisms, such as physical protection or chemical interactions with mineral surfaces. If only free particulate SOM obtained from density fractionation is considered, it rarely reaches ages exceeding 50 y. Older light particles have often been identified as charred plant residues or as fossil C. The degradability of the readily bioavailable dissolved or water-extractable OM fraction is often negatively correlated with its content in aromatic compounds, which therefore has been associated with recalcitrance. But in subsoils, dissolved organic matter aromaticity and biodegradability both are very low, indicating that other factors or compounds limit its degradation. Among the investigated specific compounds, lignin, lipids, and their derivatives have mean turnover times faster or similar as that of bulk SOM. Only a small fraction of the lignin inputs seems to persist in soils and is mainly found in the fine textural size fraction ( 40–50 y, unless fossil C was present in substantial amounts, as at a site exposed to lignite inputs in the past. Here, turnover of pyrolysis products seemed to be much longer, even for those attributed to carbohydrates or proteins. Apparently, fossil C from lignite coal is also utilized by soil organisms, which is further evidenced by low 14C concentrations in microbial phospholipid fatty acids from this site. Also, black C from charred plant materials was susceptible to microbial degradation in a short-term (60 d) and a long-term (2 y) incubation experiment. This degradation was enhanced, when glucose was supplied as an easily available microbial substrate. Similarly, SOM mineralization in many soils generally increased after addition of carbohydrates, amino acids, or simple organic acids, thus indicating that stability may also be caused by substrate limitations. It is concluded that the presented results do not provide much evidence that the selective preservation of recalcitrant primary biogenic compounds is a major SOM-stabilization mechanism. Old SOM fractions with slow turnover rates were generally only found in association with soil minerals. The only not mineral-associated SOM components that may be persistent in soils appear to be black and fossil C.

629 citations


Journal ArticleDOI
TL;DR: In this paper, a log-ratio calibration model for XRF core scanners is proposed, which is derived from a combination of XRF-spectrometry theory, principles of compositional data analysis, and empirical evidence.

628 citations


Journal ArticleDOI
TL;DR: In this article, weathering records from the South China Sea, Bay of Bengal and Arabian Sea were used to reconstruct the earliest Neogene climate of the Himalayan orogen and showed a correlation between the rate of Himalayan exhumation and monsoon intensity.
Abstract: Although most data suggest that the India–Eurasia continental collision began ∼45–55 Myr ago, the architecture of the Himalayan–Tibetan orogen is dominated by deformational structures developed in the Neogene period (<23 Myr ago). The stratigraphic record and thermochronometric data indicate that erosion of the Himalaya intensified as this constructional phase began and reached a peak around 15 Myr ago. It remained high until ∼10.5 Myr ago and subsequently slowed gradually to ∼3.5 Myr ago, but then began to increase once again in the Late Pliocene and Pleistocene epochs. Here we present weathering records from the South China Sea, Bay of Bengal and Arabian Sea that permit Asian monsoon climate to be reconstructed back to the earliest Neogene. These indicate a correlation between the rate of Himalayan exhumation—as inferred from published thermochronometric data—and monsoon intensity over the past 23 Myr. We interpret this correlation as indicating dynamic coupling between Neogene climate and both erosion and deformation in the Himalaya. Although the India–Eurasia collision initiated ∼50 Myr ago, major deformation and exhumation of the Himalaya did not begin until the early Neogene (∼23 Myr ago). This coincides with the increased intensity of the Asian monsoons, as indicated by weathering records from the South China Sea, Bay of Bengal and Arabian Sea, and hints at a dynamic coupling between climate and both erosion and deformation in the Himalaya.

603 citations


Journal ArticleDOI
21 Aug 2008-Nature
TL;DR: It is shown that in subsurface sediments buried deeper than 1 m in a wide range of oceanographic settings at least 87% of intact polar membrane lipids, biomarkers for the presence of live cells, are attributable to archaeal membranes, suggesting that Archaea constitute a major fraction of the biomass.
Abstract: Deep drilling into the marine sea floor has uncovered a vast sedimentary ecosystem of microbial cells. Extrapolation of direct counts of stained microbial cells to the total volume of habitable marine subsurface sediments suggests that between 56 Pg (ref. 1) and 303 Pg (ref. 3) of cellular carbon could be stored in this largely unexplored habitat. From recent studies using various culture-independent techniques, no clear picture has yet emerged as to whether Archaea or Bacteria are more abundant in this extensive ecosystem. Here we show that in subsurface sediments buried deeper than 1 m in a wide range of oceanographic settings at least 87% of intact polar membrane lipids, biomarkers for the presence of live cells, are attributable to archaeal membranes, suggesting that Archaea constitute a major fraction of the biomass. Results obtained from modified quantitative polymerase chain reaction and slot-blot hybridization protocols support the lipid-based evidence and indicate that these techniques have previously underestimated archaeal biomass. The lipid concentrations are proportional to those of total organic carbon. On the basis of this relationship, we derived an independent estimate of amounts of cellular carbon in the global marine subsurface biosphere. Our estimate of 90 Pg of cellular carbon is consistent, within an order of magnitude, with previous estimates, and underscores the importance of marine subsurface habitats for global biomass budgets.

594 citations


Journal ArticleDOI
TL;DR: A closer anatomical correspondence between macaque and human face-processing systems than previously realized is suggested.
Abstract: Face recognition is of central importance for primate social behavior. In both humans and macaques, the visual analysis of faces is supported by a set of specialized face areas. The precise organization of these areas and the correspondence between individual macaque and human face-selective areas are debated. Here, we examined the organization of face-selective regions across the temporal lobe in a large number of macaque and human subjects. Macaques showed 6 regions of face-selective cortex arranged in a stereotypical pattern along the temporal lobe. Human subjects showed, in addition to 3 reported face areas (the occipital, fusiform, and superior temporal sulcus face areas), a face-selective area located anterior to the fusiform face area, in the anterior collateral sulcus. These results suggest a closer anatomical correspondence between macaque and human face-processing systems than previously realized.

589 citations


Journal ArticleDOI
TL;DR: In this paper, a detailed simulation of glyoxal and methylglyoxal in the GEOS-Chem global 3-D chemical transport model including the best knowledge of source and sink processes was conducted.
Abstract: [1] We construct global budgets of atmospheric glyoxal and methylglyoxal with the goal of quantifying their potential for global secondary organic aerosol (SOA) formation via irreversible uptake by aqueous aerosols and clouds. We conduct a detailed simulation of glyoxal and methylglyoxal in the GEOS-Chem global 3-D chemical transport model including our best knowledge of source and sink processes. Our resulting best estimates of the global sources of glyoxal and methylglyoxal are 45 Tg a−1 and 140 Tg a−1, respectively. Oxidation of biogenic isoprene contributes globally 47% of glyoxal and 79% of methylglyoxal. The second most important precursors are acetylene (mostly anthropogenic) for glyoxal and acetone (mostly biogenic) for methylglyoxal. Both acetylene and acetone have long lifetimes and provide a source of dicarbonyls in the free troposphere. Atmospheric lifetimes of glyoxal and methylglyoxal in the model are 2.9 h and 1.6 h, respectively, mostly determined by photolysis. Simulated dicarbonyl concentrations in continental surface air at northern midlatitudes are in the range 10–100 ppt, consistent with in situ measurements. On a global scale, the highest concentrations are over biomass burning regions, in agreement with glyoxal column observations from the SCIAMACHY satellite instrument. SCIAMACHY and a few ship cruises also suggest a large marine source of dicarbonyls missing from our model. The global source of SOA from the irreversible uptake of dicarbonyls in GEOS-Chem is 11 Tg C a−1, including 2.6 Tg C a−1 from glyoxal and 8 Tg C a−1 from methylglyoxal; 90% of this source takes place in clouds. The magnitude of the global SOA source from dicarbonyls is comparable to that computed in GEOS-Chem from the standard mechanism involving reversible partitioning of semivolatile products from the oxidation of monoterpenes, sesquiterpenes, isoprene, and aromatics.

Journal ArticleDOI
TL;DR: It is proposed that what makes face processing special is that it is gated by an obligatory detection process, and this idea is clarified in concrete algorithmic terms and shown how it can explain a variety of phenomena associated with face processing.
Abstract: Faces are among the most informative stimuli we ever perceive: Even a split-second glimpse of a person's face tells us his identity, sex, mood, age, race, and direction of attention. The specialness of face processing is acknowledged in the artificial vision community, where contests for face-recognition algorithms abound. Neurological evidence strongly implicates a dedicated machinery for face processing in the human brain to explain the double dissociability of face- and object-recognition deficits. Furthermore, recent evidence shows that macaques too have specialized neural machinery for processing faces. Here we propose a unifying hypothesis, deduced from computational, neurological, fMRI, and single-unit experiments: that what makes face processing special is that it is gated by an obligatory detection process. We clarify this idea in concrete algorithmic terms and show how it can explain a variety of phenomena associated with face processing.

Journal ArticleDOI
27 Feb 2008-PLOS ONE
TL;DR: A Boolean network model of the cell-cycle regulatory network of fission yeast (Schizosaccharomyces Pombe) is constructed solely on the basis of the known biochemical interaction topology, and indicates that the biological dynamical sequence is robustly implemented in the regulatory network.
Abstract: A Boolean network model of the cell-cycle regulatory network of fission yeast (Schizosaccharomyces Pombe) is constructed solely on the basis of the known biochemical interaction topology. Simulating the model in the computer faithfully reproduces the known activity sequence of regulatory proteins along the cell cycle of the living cell. Contrary to existing differential equation models, no parameters enter the model except the structure of the regulatory circuitry. The dynamical properties of the model indicate that the biological dynamical sequence is robustly implemented in the regulatory network, with the biological stationary state G1 corresponding to the dominant attractor in state space, and with the biological regulatory sequence being a strongly attractive trajectory. Comparing the fission yeast cell-cycle model to a similar model of the corresponding network in S. cerevisiae, a remarkable difference in circuitry, as well as dynamics is observed. While the latter operates in a strongly damped mode, driven by external excitation, the S. pombe network represents an auto-excited system with external damping.

Proceedings ArticleDOI
22 May 2008
TL;DR: RevLib is introduced, an online resource for reversible functions and reversible circuits that provides a large database of functions with respective circuit realizations and tools are introduced to support researchers in evaluating their algorithms and documenting their results.
Abstract: Synthesis of reversible logic has become an active research area in the last years. But many proposed algorithms are evaluated with a small set of benchmarks only. Furthermore, results are often documented only in terms of gate counts or quantum costs, rather than presenting the specific circuit. In this paper RevLib (www.revlib.org) is introduced, an online resource for reversible functions and reversible circuits. RevLib provides a large database of functions with respective circuit realizations. RevLib is designed to ease the evaluation of new methods and facilitate the comparison of results. In addition, tools are introduced to support researchers in evaluating their algorithms and documenting their results.

Journal ArticleDOI
TL;DR: This review about the genus Laminaria sensu lato summarizes the extensive literature that has been published since the overview of the genus given by Kain in 1979, and covers recent insights into phylogeny and taxonomy, and discusses morphotypes, ecotypes, population genetics and demography.
Abstract: This review about the genus Laminaria sensu lato summarizes the extensive literature that has been published since the overview of the genus given by Kain in 1979. The recent proposal to divide the genus into the two genera Laminaria and Saccharina is acknowledged, but the published data are discussed under a 'sensu lato' concept, introduced here. This includes all species which have been considered to be 'Laminaria' before the division of the genus. In detail, after an introduction the review covers recent insights into phylogeny and taxonomy, and discusses morphotypes, ecotypes, population genetics and demography. It describes growth and photosynthetic performance of sporophytes with special paragraphs on the regulation of sporogenesis, regulation by endogenous rhythms, nutrient metabolism, storage products, and salinity tolerance. The biology of microstages is discussed separately. The ecology of these kelps is described with a focus on stress defence against abiotic and biotic factors and the role of Laminaria as habitat, its trophic interactions and its competition is discussed. Finally, recent developments in aquaculture are summarized. In conclusion to each section, as a perspective and guide to future research, we draw attention to the remaining gaps in the knowledge about the genus and kelps in general.

Journal ArticleDOI
06 Jun 2008-Science
TL;DR: Results suggest that the face patches form a strongly and specifically interconnected hierarchical network in the macaque ventral pathway.
Abstract: The brain processes objects through a series of regions along the ventral visual pathway, but the circuitry subserving the analysis of specific complex forms remains unknown. One complex form category, faces, selectively activates six patches of cortex in the macaque ventral pathway. To identify the connectivity of these face patches, we used electrical microstimulation combined with simultaneous functional magnetic resonance imaging. Stimulation of each of four targeted face patches produced strong activation, specifically within a subset of the other face patches. Stimulation outside the face patches produced an activation pattern that spared the face patches. These results suggest that the face patches form a strongly and specifically interconnected hierarchical network.

Journal ArticleDOI
TL;DR: The TEX86 (TetraEther indeX of tetraethers consisting of 86 carbon atoms) paleothermometer is based on the relative distribution of archaeal lipids and is increasingly used to reconstruct past sea water temperatures as discussed by the authors.

Journal ArticleDOI
TL;DR: The interesting question of why at all such simple models can describe aspects of biology despite their simplicity is discussed, and prospects of Boolean models in exploratory dynamical models for biological circuits and their mutants will be discussed.
Abstract: Computer models are valuable tools towards an understanding of the cell's biochemical regulatory machinery. Possible levels of description of such models range from modelling the underlying biochemical details to top-down approaches, using tools from the theory of complex networks. The latter, coarse-grained approach is taken where regulatory circuits are classified in graph-theoretical terms, with the elements of the regulatory networks being reduced to simply nodes and links, in order to obtain architectural information about the network. Further, considering dynamics on networks at such an abstract level seems rather unlikely to match dynamical regulatory activity of biological cells. Therefore, it came as a surprise when recently examples of discrete dynamical network models based on very simplistic dynamical elements emerged which in fact do match sequences of regulatory patterns of their biological counterparts. Here I will review such discrete dynamical network models, or Boolean networks, of biological regulatory networks. Further, we will take a look at such models extended with stochastic noise, which allow studying the role of network topology in providing robustness against noise. In the end, we will discuss the interesting question of why at all such simple models can describe aspects of biology despite their simplicity. Finally, prospects of Boolean models in exploratory dynamical models for biological circuits and their mutants will be discussed.

Journal ArticleDOI
29 May 2008-Nature
TL;DR: It is demonstrated that prokaryotic cell abundances on seafloor-exposed basalts are 3–4 orders of magnitude greater than in overlying deep sea water, with important implications for deep-sea carbon cycling and chemical exchange between basalt and sea water.
Abstract: Oceanic lithosphere exposed at the sea floor undergoes seawater– rock alteration reactions involving the oxidation and hydration of glassy basalt. Basalt alteration reactions are theoretically capable ofsupplyingsufficientenergyforchemolithoautotrophicgrowth 1 . Such reactions have been shown to generate microbial biomass in the laboratory 2 , but field-based support for the existence of microbes that are supported by basalt alteration is lacking. Here, using quantitative polymerase chain reaction, in situ hybridization and microscopy, we demonstrate that prokaryotic cell abundances on seafloor-exposed basalts are 3–4 orders of magnitude greater than in overlying deep sea water. Phylogenetic analyses of basaltic lavas from the East Pacific Rise (96 N) and around Hawaii reveal that the basalt-hosted biosphere harbours high bacterial community richness and that community membership is shared between these sites. We hypothesize that alteration reactions fuel chemolithoautotrophic microorganisms, which constitute a trophic base of the basalt habitat, with important implications for deep-sea carbon cycling andchemical exchange between basalt and sea water. We assessed the abundance, species richness and phylogenetic

Journal ArticleDOI
TL;DR: In this paper, a review analyzes and summarizes the results obtained to date by a significant number of research groups on the micelle formation of imidazolium ILs in an aqueous solution, including the phenomena observed.

Journal ArticleDOI
TL;DR: In this paper, the critical micelle concentration (CMC) for a number of imidazolium ionic liquids was determined in aqueous solution, and the expected dependency of the CMC on the length of the alkyl chain of the investigated 1-alkyl-3methylimidazolate ILs was shown.

Journal ArticleDOI
TL;DR: In this paper, XRF and bulk carbonate δ18O results from Integrated Ocean Drilling Program Site U1308 (reoccupation of Deep Sea Drilling Project Site 609) were used to develop proxy records of ice-rafted detritus (IRD) for the last ∼1.4 Ma.
Abstract: [1] Heinrich events are well documented for the last glaciation, but little is known about their occurrence in older glacial periods of the Pleistocene. Here we report scanning XRF and bulk carbonate δ18O results from Integrated Ocean Drilling Program Site U1308 (reoccupation of Deep Sea Drilling Project Site 609) that are used to develop proxy records of ice-rafted detritus (IRD) for the last ∼1.4 Ma. Ca/Sr is used as an indicator of IRD layers that are rich in detrital carbonate (i.e., Heinrich layers), whereas Si/Sr reflects layers that are poor in biogenic carbonate and relatively rich in detrital silicate minerals. A pronounced change occurred in the composition and frequency of IRD at ∼640 ka during marine isotope stage (MIS) 16, coinciding with the end of the middle Pleistocene transition. At this time, “Hudson Strait” Heinrich layers suddenly appeared in the sedimentary record of Site U1308, and the dominant period of the Si/Sr proxy shifted from 41 ka prior to 640 ka to 100 ka afterward. The onset of Heinrich layers during MIS 16 represents either the initiation of surging of the Laurentide Ice Sheet (LIS) off Hudson Strait or the first time icebergs produced by this process survived the transport to Site U1308. We speculate that ice volume (i.e., thickness) and duration surpassed a critical threshold during MIS 16 and activated the dynamical processes responsible for LIS instability in the region of Hudson Strait. We also observe a strong coupling between IRD proxies and benthic δ13C variation at Site U1308 throughout the Pleistocene, supporting a link between iceberg discharge and weakening of thermohaline circulation in the North Atlantic.

Journal ArticleDOI
01 Apr 2008
TL;DR: The h(t) solution, as it includes the gravity term (hydrostatic pressure), enables the calculation of the liquid rise behavior for longer times than the classical Lucas-Washburn equation.
Abstract: We derive an analytic solution for the capillary rise of liquids in a cylindrical tube or a porous medium in terms of height h as a function of time t. The implicit t(h) solution by Washburn is the basis for these calculations and the Lambert W function is used for its mathematical rearrangement. The original equation is derived out of the 1D momentum conservation equation and features viscous and gravity terms. Thus our h(t) solution, as it includes the gravity term (hydrostatic pressure), enables the calculation of the liquid rise behavior for longer times than the classical Lucas-Washburn equation. Based on the new equation several parameters like the steady state time and the validity of the Lucas-Washburn equation are examined. The results are also discussed in dimensionless form.

Journal ArticleDOI
TL;DR: In this paper, the authors combine features of routing and scheduling problems and cooperative game theory to analyze the profit margins resulting from horizontal cooperation among freight carriers in order to balance their request portfolios.
Abstract: In modern transportation systems, the potential for further decreasing the costs of fulfilling customer requests is severely limited while market competition is constantly reducing revenues. However, increased competitiveness through cost reductions can be achieved if freight carriers cooperate in order to balance their request portfolios. Participation in such coalitions can benefit the entire coalition, as well as each participant individually, thus reinforcing the market position of the partners. The work presented in this paper uniquely combines features of routing and scheduling problems and of cooperative game theory. In the first part, the profit margins resulting from horizontal cooperation among freight carriers are analysed. It is assumed that the structure of customer requests corresponds to that of a pickup and delivery problem with time windows for each freight carrier. In the second part, the possibilities of sharing these profit margins fairly among the partners are discussed. The Shapley value can be used to determine a fair allocation. Numerical results for real-life and artificial instances are presented.

Journal ArticleDOI
TL;DR: A novel, robust, and general mechanism is reported that results in highly directional light emission from high-quality modes from microdisk cavities and applies even to microlasers operating in the common multimode regime.
Abstract: A drawback of optical modes in microdisk cavities is their isotropic light emission. Here we report a novel, robust, and general mechanism that results in highly directional light emission from high-quality modes. This surprising finding is explained by a combination of wave phenomena (wave localization along unstable periodic ray trajectories) and chaotic ray dynamics in open systems (escape along unstable manifolds) and applies even to microlasers operating in the common multimode regime. We demonstrate our novel mechanism for the limacon cavity and find directional emission with narrow angular divergence for a significant range of geometries and material parameters.

Journal ArticleDOI
TL;DR: In this article, the potential of remote sensing methods to obtain information on some snow physical variables such as grain size, liquid water content and snow depth is discussed, and the possibilities for and difficulties of building a snow photochemistry model by adapting current snow physics models are explored.
Abstract: Snow on the ground is a complex multiphase photochemical reactor that dramatically modifies the chemical composition of the overlying atmosphere. A quantitative description of the emissions of reactive gases by snow requires knowledge of snow physical properties. This overview details our current understanding of how those physical properties relevant to snow photochemistry vary during snow metamorphism. Properties discussed are density, specific surface area, thermal conductivity, permeability, gas diffusivity and optical properties. Inasmuch as possible, equations to parameterize these properties as functions of climatic variables are proposed, based on field measurements, laboratory experiments and theory. The potential of remote sensing methods to obtain information on some snow physical variables such as grain size, liquid water content and snow depth are discussed. The possibilities for and difficulties of building a snow photochemistry model by adapting current snow physics models are explored. Elaborate snow physics models already exist, and including variables of particular interest to snow photochemistry such as light fluxes and specific surface area appears possible. On the other hand, understanding the nature and location of reactive molecules in snow seems to be the greatest difficulty modelers will have to face for lack of experimental data, and progress on this aspect will require the detailed study of natural snow samples.

Journal ArticleDOI
TL;DR: In this paper, the first complete cyclic sedimentary successions for the early Paleogene from drilling multiple holes have been retrieved during two ODP expeditions: Leg 198 (Shatsky Rise, NW Pacific Ocean) and Leg 208 (Walvis Ridge, SE Atlantic Ocean). These new records allow to construct a comprehensive astronomically calibrated stratigraphic framework with an unprecedented accuracy for both the Atlantic and the Pacific Oceans covering the entire Paleocene epoch based on the identification of the stable long-eccentricity cycle (405-kyr).

Journal ArticleDOI
TL;DR: It is suggested that organic matter is biodegraded to simple molecules, such as H2 and CO2, which fuel methanogenesis and the generation of large coal bed methane reserves in the eastern Illinois Basin.
Abstract: A series of molecular and geochemical studies were performed to study microbial, coal bed methane formation in the eastern Illinois Basin. Results suggest that organic matter is biodegraded to simple molecules, such as H2 and CO2, which fuel methanogenesis and the generation of large coal bed methane reserves. Small-subunit rRNA analysis of both the in situ microbial community and highly purified, methanogenic enrichments indicated that Methanocorpusculum is the dominant genus. Additionally, we characterized this methanogenic microorganism using scanning electron microscopy and distribution of intact polar cell membrane lipids. Phylogenetic studies of coal water samples helped us develop a model of methanogenic biodegradation of macromolecular coal and coal-derived oil by a complex microbial community. Based on enrichments, phylogenetic analyses, and calculated free energies at in situ subsurface conditions for relevant metabolisms (H2-utilizing methanogenesis, acetoclastic methanogenesis, and homoacetogenesis), H2-utilizing methanogenesis appears to be the dominant terminal process of biodegradation of coal organic matter at this location.

Journal ArticleDOI
TL;DR: In this paper, the authors studied the development of the hydrological balance during the Pleistocene period and found that the change in humidity may be related to changes in the strength of the North Atlantic meridional overturning circulation.
Abstract: Variability in northwest African humidity has been documented for the Holocene period, but less is known about the development of the hydrological balance during the Pleistocene period. Sedimentary records and numerical simulations for the past 120,000 years show abrupt millennial-scale changes in humidity, which may be related to changes in the strength of the North Atlantic meridional overturning circulation.

Journal ArticleDOI
TL;DR: It is found that considering the flow dynamics may imply reduced network robustness compared to previous static overload failure models because of the transient oscillations or overshooting in the loads.
Abstract: We study cascading failures in networks using a dynamical flow model based on simple conservation and distribution laws. It is found that considering the flow dynamics may imply reduced network robustness compared to previous static overload failure models. This is due to the transient oscillations or overshooting in the loads, when the flow dynamics adjusts to the new (remaining) network structure. The robustness of networks showing cascading failures is generally given by a complex interplay between the network topology and flow dynamics.