scispace - formally typeset
Search or ask a question
Institution

University of Bremen

EducationBremen, Germany
About: University of Bremen is a education organization based out in Bremen, Germany. It is known for research contribution in the topics: Population & Context (language use). The organization has 14563 authors who have published 37279 publications receiving 970381 citations. The organization is also known as: Universität Bremen.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors show that the late Holocene drought cycles following the 4.2 ka BP event vary between 200 and 800 years and are coherent with the evolution of cosmogenic 14C production rates, suggesting that solar variability is one fundamental cause behind Holocene rainfall changes over south Asia.
Abstract: [1] Planktonic oxygen isotope ratios off the Indus delta reveal climate changes with a multi-centennial pacing during the last 6 ka, with the most prominent change recorded at 4.2 ka BP. Opposing isotopic trends across the northern Arabian Sea surface at that time indicate a reduction in Indus river discharge and suggest that later cycles also reflect variations in total annual rainfall over south Asia. The 4.2 ka event is coherent with the termination of urban Harappan civilization in the Indus valley. Thus, drought may have initiated southeastward habitat tracking within the Harappan cultural domain. The late Holocene drought cycles following the 4.2 ka BP event vary between 200 and 800 years and are coherent with the evolution of cosmogenic 14C production rates. This suggests that solar variability is one fundamental cause behind Holocene rainfall changes over south Asia.

522 citations

Journal ArticleDOI
TL;DR: The CICI framework addresses and graphically presents context, implementation and setting in an integrated way and aims at simplifying and structuring complexity in order to advance the understanding of whether and how interventions work.
Abstract: The effectiveness of complex interventions, as well as their success in reaching relevant populations, is critically influenced by their implementation in a given context. Current conceptual frameworks often fail to address context and implementation in an integrated way and, where addressed, they tend to focus on organisational context and are mostly concerned with specific health fields. Our objective was to develop a framework to facilitate the structured and comprehensive conceptualisation and assessment of context and implementation of complex interventions. The Context and Implementation of Complex Interventions (CICI) framework was developed in an iterative manner and underwent extensive application. An initial framework based on a scoping review was tested in rapid assessments, revealing inconsistencies with respect to the underlying concepts. Thus, pragmatic utility concept analysis was undertaken to advance the concepts of context and implementation. Based on these findings, the framework was revised and applied in several systematic reviews, one health technology assessment (HTA) and one applicability assessment of very different complex interventions. Lessons learnt from these applications and from peer review were incorporated, resulting in the CICI framework. The CICI framework comprises three dimensions—context, implementation and setting—which interact with one another and with the intervention dimension. Context comprises seven domains (i.e., geographical, epidemiological, socio-cultural, socio-economic, ethical, legal, political); implementation consists of five domains (i.e., implementation theory, process, strategies, agents and outcomes); setting refers to the specific physical location, in which the intervention is put into practise. The intervention and the way it is implemented in a given setting and context can occur on a micro, meso and macro level. Tools to operationalise the framework comprise a checklist, data extraction tools for qualitative and quantitative reviews and a consultation guide for applicability assessments. The CICI framework addresses and graphically presents context, implementation and setting in an integrated way. It aims at simplifying and structuring complexity in order to advance our understanding of whether and how interventions work. The framework can be applied in systematic reviews and HTA as well as primary research and facilitate communication among teams of researchers and with various stakeholders.

520 citations

Journal ArticleDOI
21 Apr 2017-Science
TL;DR: It is shown that recent ice reductions, weakening of the halocline, and shoaling of the intermediate-depth Atlantic Water layer in the eastern Eurasian Basin have increased winter ventilation in the ocean interior, making this region structurally similar to that of the western Eurasian basin.
Abstract: Arctic sea-ice loss is a leading indicator of climate change and can be attributed, in large part, to atmospheric forcing. Here, we show that recent ice reductions, weakening of the halocline, and shoaling of the intermediate-depth Atlantic Water layer in the eastern Eurasian Basin have increased winter ventilation in the ocean interior, making this region structurally similar to that of the western Eurasian Basin. The associated enhanced release of oceanic heat has reduced winter sea-ice formation at a rate now comparable to losses from atmospheric thermodynamic forcing, thus explaining the recent reduction in sea-ice cover in the eastern Eurasian Basin. This encroaching "atlantification" of the Eurasian Basin represents an essential step toward a new Arctic climate state, with a substantially greater role for Atlantic inflows.

520 citations

Journal ArticleDOI
23 Jun 2005-Nature
TL;DR: A distinct carbonate-poor red clay layer in deep-sea cores from Walvis ridge is reported, which is term the Elmo horizon, which has similar geochemical and biotic characteristics as the Palaeocene–Eocene thermal maximum, but of smaller magnitude, suggesting that it represents a second global thermal maximum.
Abstract: At the boundary between the Palaeocene and Eocene epochs, about 55 million years ago, the Earth experienced a strong global warming event, the Palaeocene–Eocene thermal maximum1,2,3,4. The leading hypothesis to explain the extreme greenhouse conditions prevalent during this period is the dissociation of 1,400 to 2,800 gigatonnes of methane from ocean clathrates5,6, resulting in a large negative carbon isotope excursion and severe carbonate dissolution in marine sediments. Possible triggering mechanisms for this event include crossing a threshold temperature as the Earth warmed gradually7, comet impact8, explosive volcanism9,10 or ocean current reorganization and erosion at continental slopes11, whereas orbital forcing has been excluded12. Here we report a distinct carbonate-poor red clay layer in deep-sea cores from Walvis ridge13, which we term the Elmo horizon. Using orbital tuning, we estimate deposition of the Elmo horizon at about 2 million years after the Palaeocene–Eocene thermal maximum. The Elmo horizon has similar geochemical and biotic characteristics as the Palaeocene–Eocene thermal maximum, but of smaller magnitude. It is coincident with carbon isotope depletion events in other ocean basins, suggesting that it represents a second global thermal maximum. We show that both events correspond to maxima in the ∼405-kyr and ∼100-kyr eccentricity cycles that post-date prolonged minima in the 2.25-Myr eccentricity cycle, implying that they are indeed astronomically paced.

519 citations

Journal ArticleDOI
TL;DR: The potential impact of the corona for NM-microbiome-(human)host interactions and the novel concept of 'nanologicals', i.e., the nanomaterial-specific targeting of molecular machines are introduced.
Abstract: Besides the wide use of engineered nanomaterials (NMs) in technical products, their applications are not only increasing in biotechnology and biomedicine, but also in the environmental field. While the physico-chemical properties and behaviour of NMs can be characterized accurately under idealized conditions, this is no longer the case in complex physiological or natural environments. Herein, proteins and other biomolecules rapidly bind to NMs, forming a protein/biomolecule corona that critically affects the NMs' (patho)biological and technical identities. As the corona impacts the in vitro and/or in vivo NM applications in humans and ecosystems, a mechanistic understanding of its relevance and of the biophysical forces regulating corona formation is mandatory. Based on recent insights, we here critically review and present an updated concept of corona formation and evolution. We comment on how corona signatures may be linked to effects at the nano–bio interface in physiological and environmental systems. In order to comprehensively analyse corona profiles and to mechanistically understand the coronas' biological/ecological impact, we present a tiered multidisciplinary approach. To stimulate progress in this field, we introduce the potential impact of the corona for NM–microbiome–(human)host interactions and the novel concept of ‘nanologicals’, i.e., the nanomaterial-specific targeting of molecular machines. We conclude by discussing the relevant challenges that still need to be resolved in this field.

519 citations


Authors

Showing all 14961 results

NameH-indexPapersCitations
Roger Y. Tsien163441138267
Klaus-Robert Müller12976479391
Ron Kikinis12668463398
Ulrich S. Schubert122222985604
Andreas Richter11076948262
Michael Böhm10875566103
Juan Bisquert10745046267
John P. Sumpter10126646184
Jos Lelieveld10057037657
Michael Schulz10075950719
Peter Singer9470237128
Charles R. Tyler9232531724
John P. Burrows9081536169
Hans-Peter Kriegel8944473932
Harald Haas8575034927
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

93% related

University of Hamburg
89.2K papers, 2.8M citations

92% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

92% related

Technische Universität München
123.4K papers, 4M citations

91% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023343
2022709
20212,106
20202,309
20192,191
20181,965