scispace - formally typeset
Search or ask a question
Institution

University of Bremen

EducationBremen, Germany
About: University of Bremen is a education organization based out in Bremen, Germany. It is known for research contribution in the topics: Population & Glacial period. The organization has 14563 authors who have published 37279 publications receiving 970381 citations. The organization is also known as: Universität Bremen.


Papers
More filters
Journal ArticleDOI
27 Feb 2008-PLOS ONE
TL;DR: A Boolean network model of the cell-cycle regulatory network of fission yeast (Schizosaccharomyces Pombe) is constructed solely on the basis of the known biochemical interaction topology, and indicates that the biological dynamical sequence is robustly implemented in the regulatory network.
Abstract: A Boolean network model of the cell-cycle regulatory network of fission yeast (Schizosaccharomyces Pombe) is constructed solely on the basis of the known biochemical interaction topology. Simulating the model in the computer faithfully reproduces the known activity sequence of regulatory proteins along the cell cycle of the living cell. Contrary to existing differential equation models, no parameters enter the model except the structure of the regulatory circuitry. The dynamical properties of the model indicate that the biological dynamical sequence is robustly implemented in the regulatory network, with the biological stationary state G1 corresponding to the dominant attractor in state space, and with the biological regulatory sequence being a strongly attractive trajectory. Comparing the fission yeast cell-cycle model to a similar model of the corresponding network in S. cerevisiae, a remarkable difference in circuitry, as well as dynamics is observed. While the latter operates in a strongly damped mode, driven by external excitation, the S. pombe network represents an auto-excited system with external damping.

519 citations

Journal ArticleDOI
M. Lang1, H. Guo, J.E. Odegard, C.S. Burrus, Raymond O. Wells 
TL;DR: A new nonlinear noise reduction method is presented that uses the discrete wavelet transform instead of the usual orthogonal one, resulting in a significantly improved noise reduction compared to the original wavelet based approach.
Abstract: A new nonlinear noise reduction method is presented that uses the discrete wavelet transform. Similar to Donoho (1995) and Donohoe and Johnstone (1994, 1995), the authors employ thresholding in the wavelet transform domain but, following a suggestion by Coifman, they use an undecimated, shift-invariant, nonorthogonal wavelet transform instead of the usual orthogonal one. This new approach can be interpreted as a repeated application of the original Donoho and Johnstone method for different shifts. The main feature of the new algorithm is a significantly improved noise reduction compared to the original wavelet based approach. This holds for a large class of signals, both visually and in the l/sub 2/ sense, and is shown theoretically as well as by experimental results.

516 citations

Journal ArticleDOI
TL;DR: Herrmann-Lingen, Buss & Snaith as discussed by the authors handelt sich um ein rasch zu bearbeitendes Selbstbeurteilungsverfahren, das aus je sieben Angstund Depressionsfragen besteht.
Abstract: Es handelt sich um ein rasch zu bearbeitendes Selbstbeurteilungsverfahren, das aus je sieben Angstund Depressionsfragen besteht: Die HADS-D kann als Screening und zur Verlaufsbeurteilung ab 15 Jahren eingesetzt werden. Im deutschen Sprachraum liegt jetzt eine aktualisierte und mit neuen Normen (aus der Allgemeinbevolkerung) ausgestattete, dritte Auflage vor (Herrmann-Lingen, Buss & Snaith, 2011).

515 citations

Journal ArticleDOI
TL;DR: This review highlights the importance of the As-induced generation of reactive oxygen species (ROS) as well as their damaging impacts on plants at biochemical, genetic, and molecular levels.
Abstract: Environmental contamination with arsenic (As) is a global environmental, agricultural and health issue due to the highly toxic and carcinogenic nature of As. Exposure of plants to As, even at very low concentration, can cause many morphological, physiological, and biochemical changes. The recent research on As in the soil-plant system indicates that As toxicity to plants varies with its speciation in plants (e.g., arsenite, As(III); arsenate, As(V)), with the type of plant species, and with other soil factors controlling As accumulation in plants. Various plant species have different mechanisms of As(III) or As(V) uptake, toxicity, and detoxification. This review briefly describes the sources and global extent of As contamination and As speciation in soil. We discuss different mechanisms responsible for As(III) and As(V) uptake, toxicity, and detoxification in plants, at physiological, biochemical, and molecular levels. This review highlights the importance of the As-induced generation of reactive oxygen species (ROS), as well as their damaging impacts on plants at biochemical, genetic, and molecular levels. The role of different enzymatic (superoxide dismutase, catalase, glutathione reductase, and ascorbate peroxidase) and non-enzymatic (salicylic acid, proline, phytochelatins, glutathione, nitric oxide, and phosphorous) substances under As(III/V) stress have been delineated via conceptual models showing As translocation and toxicity pathways in plant species. Significantly, this review addresses the current, albeit partially understood, emerging aspects on (i) As-induced physiological, biochemical, and genotoxic mechanisms and responses in plants and (ii) the roles of different molecules in modulation of As-induced toxicities in plants. We also provide insight on some important research gaps that need to be filled to advance our scientific understanding in this area of research on As in soil-plant systems.

513 citations

Journal ArticleDOI
TL;DR: Novel methods for detecting steady-state visual evoked potentials using multiple electroencephalogram (EEG) signals are presented, tailored for brain-computer interfacing, where fast and accurate detection is of vital importance for achieving high information transfer rates.
Abstract: In this paper, novel methods for detecting steady-state visual evoked potentials using multiple electroencephalogram (EEG) signals are presented. The methods are tailored for brain-computer interfacing, where fast and accurate detection is of vital importance for achieving high information transfer rates. High detection accuracy using short time segments is obtained by finding combinations of electrode signals that cancel strong interference signals in the EEG data. Data from a test group consisting of 10 subjects are used to evaluate the new methods and to compare them to standard techniques. Using 1-s signal segments, six different visual stimulation frequencies could be discriminated with an average classification accuracy of 84%. An additional advantage of the presented methodology is that it is fully online, i.e., no calibration data for noise estimation, feature extraction, or electrode selection is needed

511 citations


Authors

Showing all 14961 results

NameH-indexPapersCitations
Roger Y. Tsien163441138267
Klaus-Robert Müller12976479391
Ron Kikinis12668463398
Ulrich S. Schubert122222985604
Andreas Richter11076948262
Michael Böhm10875566103
Juan Bisquert10745046267
John P. Sumpter10126646184
Jos Lelieveld10057037657
Michael Schulz10075950719
Peter Singer9470237128
Charles R. Tyler9232531724
John P. Burrows9081536169
Hans-Peter Kriegel8944473932
Harald Haas8575034927
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

93% related

University of Hamburg
89.2K papers, 2.8M citations

92% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

92% related

Technische Universität München
123.4K papers, 4M citations

91% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023343
2022709
20212,106
20202,309
20192,191
20181,965