scispace - formally typeset
Search or ask a question
Institution

University of Bremen

EducationBremen, Germany
About: University of Bremen is a education organization based out in Bremen, Germany. It is known for research contribution in the topics: Population & Glacial period. The organization has 14563 authors who have published 37279 publications receiving 970381 citations. The organization is also known as: Universität Bremen.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the influence of a plasma on the shadow of a supermassive black hole was analyzed. But the authors restricted their analysis to spherically symmetric and static situations, where the shadow is circular and the plasma is assumed to be nonmagnetized and pressureless.
Abstract: We analytically calculate the influence of a plasma on the shadow of a black hole (or of another compact object). We restrict to spherically symmetric and static situations, where the shadow is circular. The plasma is assumed to be nonmagnetized and pressureless. We derive the general formulas for a spherically symmetric plasma density on an unspecified spherically symmetric and static spacetime. Our main result is an analytical formula for the angular size of the shadow. As a plasma is a dispersive medium, the radius of the shadow depends on the photon frequency. The effect of the plasma is significant only in the radio regime. The formalism applies not only to black holes but also, e.g., to wormholes. As examples for the underlying spacetime model, we consider the Schwarzschild spacetime and the Ellis wormhole. In particular, we treat the case that the plasma is in radial free fall from infinity onto a Schwarzschild black hole. We find that for an observer far away from a Schwarzschild black hole, the plasma has a decreasing effect on the size of the shadow. The perspectives of actually observing the influence of a plasma on the shadows of supermassive black holes are discussed.

243 citations

Journal ArticleDOI
17 Mar 2011-Nature
TL;DR: The rapid recovery of the carbon cycle following each Eocene hyperthermal strongly suggests that carbon was re-sequestered by the ocean, rather than the much slower process of silicate rock weathering proposed for the PETM.
Abstract: Hyperthermals’ are intervals of rapid, pronounced global warming known from six episodes within the Palaeocene and Eocene epochs (∼65–34 million years (Myr) ago)1,2,3,4,5,6,7,8,9,10,11,12,13. The most extreme hyperthermal was the ∼170 thousand year (kyr) interval2 of 5–7 °C global warming3 during the Palaeocene–Eocene Thermal Maximum (PETM, 56 Myr ago). The PETM is widely attributed to massive release of greenhouse gases from buried sedimentary carbon reservoirs1,3,6,11,14,15,16,17, and other, comparatively modest, hyperthermals have also been linked to the release of sedimentary carbon3,6,11,16,17. Here we show, using new 2.4-Myr-long Eocene deep ocean records, that the comparatively modest hyperthermals are much more numerous than previously documented, paced by the eccentricity of Earth’s orbit and have shorter durations (∼40 kyr) and more rapid recovery phases than the PETM. These findings point to the operation of fundamentally different forcing and feedback mechanisms than for the PETM, involving redistribution of carbon among Earth’s readily exchangeable surface reservoirs rather than carbon exhumation from, and subsequent burial back into, the sedimentary reservoir. Specifically, we interpret our records to indicate repeated, large-scale releases of dissolved organic carbon (at least 1,600 gigatonnes) from the ocean by ventilation (strengthened oxidation) of the ocean interior. The rapid recovery of the carbon cycle following each Eocene hyperthermal strongly suggests that carbon was re-sequestered by the ocean, rather than the much slower process of silicate rock weathering proposed for the PETM1,3. Our findings suggest that these pronounced climate warming events were driven not by repeated releases of carbon from buried sedimentary sources3,6,11,16,17, but, rather, by patterns of surficial carbon redistribution familiar from younger intervals of Earth history.

242 citations

Journal ArticleDOI
TL;DR: The use of DNA for the selective positioning of macromolecular components, the fabrication of nanostructured DNA scaffolds, as well as the DNA-templated synthesis of nanometer-sized and mesoscopic complexes, consisting of inorganic and bioorganic compounds, are exciting areas of current research.

242 citations

Journal ArticleDOI
TL;DR: Study of the ground-state and finite-density optical response of molybdenum disulfide by solving the semiconductor Bloch equations, using ab initio band structures and Coulomb interaction matrix elements reveals a redshift of the excitonic ground- state absorption.
Abstract: We study the ground-state and finite-density optical response of molybdenum disulfide by solving the semiconductor Bloch equations, using ab initio band structures and Coulomb interaction matrix elements. Spectra for excited carrier densities up to 1013 cm–2 reveal a redshift of the excitonic ground-state absorption, whereas higher excitonic lines are found to disappear successively due to Coulomb-induced band gap shrinkage of more than 500 meV and binding-energy reduction. Strain-induced band variations lead to a redshift of the lowest exciton line by ∼110 meV/% and change the direct transition to indirect while maintaining the magnitude of the optical response.

241 citations

Journal ArticleDOI
TL;DR: Marine sediment cores from the continental slope off mid-latitude Chile (33°S) were studied with regard to grain-size distributions and clay mineral composition as discussed by the authors, providing a 28,000-yr14C accelerator mass spectrometry-dated record of variations in the terrigenous sediment supply reflecting modifications of weathering conditions and sediment source areas in the continental hinterland.

241 citations


Authors

Showing all 14961 results

NameH-indexPapersCitations
Roger Y. Tsien163441138267
Klaus-Robert Müller12976479391
Ron Kikinis12668463398
Ulrich S. Schubert122222985604
Andreas Richter11076948262
Michael Böhm10875566103
Juan Bisquert10745046267
John P. Sumpter10126646184
Jos Lelieveld10057037657
Michael Schulz10075950719
Peter Singer9470237128
Charles R. Tyler9232531724
John P. Burrows9081536169
Hans-Peter Kriegel8944473932
Harald Haas8575034927
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

93% related

University of Hamburg
89.2K papers, 2.8M citations

92% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

92% related

Technische Universität München
123.4K papers, 4M citations

91% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023343
2022709
20212,106
20202,309
20192,191
20181,965