scispace - formally typeset
Search or ask a question

Showing papers by "University of British Columbia published in 2014"


Journal ArticleDOI
Keith A. Olive1, Kaustubh Agashe2, Claude Amsler3, Mario Antonelli  +222 moreInstitutions (107)
TL;DR: The review as discussed by the authors summarizes much of particle physics and cosmology using data from previous editions, plus 3,283 new measurements from 899 Japers, including the recently discovered Higgs boson, leptons, quarks, mesons and baryons.
Abstract: The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 Japers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosynthesis, Astrophysical Constants and Cosmological Parameters.

7,337 citations


Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, C. Armitage-Caplan3, Monique Arnaud4  +324 moreInstitutions (70)
TL;DR: In this paper, the authors present the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra, which are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations.
Abstract: This paper presents the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra. We find that the Planck spectra at high multipoles (l ≳ 40) are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations. Within the context of this cosmology, the Planck data determine the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be θ∗ = (1.04147 ± 0.00062) × 10-2, Ωbh2 = 0.02205 ± 0.00028, Ωch2 = 0.1199 ± 0.0027, and ns = 0.9603 ± 0.0073, respectively(note that in this abstract we quote 68% errors on measured parameters and 95% upper limits on other parameters). For this cosmology, we find a low value of the Hubble constant, H0 = (67.3 ± 1.2) km s-1 Mpc-1, and a high value of the matter density parameter, Ωm = 0.315 ± 0.017. These values are in tension with recent direct measurements of H0 and the magnitude-redshift relation for Type Ia supernovae, but are in excellent agreement with geometrical constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent level precision using Planck CMB data alone. We use high-resolution CMB data together with Planck to provide greater control on extragalactic foreground components in an investigation of extensions to the six-parameter ΛCDM model. We present selected results from a large grid of cosmological models, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured over the standard six-parameter ΛCDM cosmology. The deviation of the scalar spectral index from unity isinsensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find an upper limit of r0.002< 0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles beyond the three families of neutrinos in the standard model. Using BAO and CMB data, we find Neff = 3.30 ± 0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the sum of neutrino masses. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of Neff = 3.046. We find no evidence for dynamical dark energy; using BAO and CMB data, the dark energy equation of state parameter is constrained to be w = -1.13-0.10+0.13. We also use the Planck data to set limits on a possible variation of the fine-structure constant, dark matter annihilation and primordial magnetic fields. Despite the success of the six-parameter ΛCDM model in describing the Planck data at high multipoles, we note that this cosmology does not provide a good fit to the temperature power spectrum at low multipoles. The unusual shape of the spectrum in the multipole range 20 ≲ l ≲ 40 was seen previously in the WMAP data and is a real feature of the primordial CMB anisotropies. The poor fit to the spectrum at low multipoles is not of decisive significance, but is an “anomaly” in an otherwise self-consistent analysis of the Planck temperature data.

7,060 citations


Journal ArticleDOI
Adam J. Bass1, Vesteinn Thorsson2, Ilya Shmulevich2, Sheila Reynolds2  +254 moreInstitutions (32)
11 Sep 2014-Nature
TL;DR: A comprehensive molecular evaluation of 295 primary gastric adenocarcinomas as part of The Cancer Genome Atlas (TCGA) project is described and a molecular classification dividing gastric cancer into four subtypes is proposed.
Abstract: Gastric cancer was the world’s third leading cause of cancer mortality in 2012, responsible for 723,000 deaths1. The vast majority of gastric cancers are adenocarcinomas, which can be further subdivided into intestinal and diffuse types according to the Lauren classification2. An alternative system, proposed by the World Health Organization, divides gastric cancer into papillary, tubular, mucinous (colloid) and poorly cohesive carcinomas3. These classification systems have little clinical utility, making the development of robust classifiers that can guide patient therapy an urgent priority. The majority of gastric cancers are associated with infectious agents, including the bacterium Helicobacter pylori4 and Epstein–Barr virus (EBV). The distribution of histological subtypes of gastric cancer and the frequencies of H. pylori and EBV associated gastric cancer vary across the globe5. A small minority of gastric cancer cases are associated with germline mutation in E-cadherin (CDH1)6 or mismatch repair genes7 (Lynch syndrome), whereas sporadic mismatch repair-deficient gastric cancers have epigenetic silencing of MLH1 in the context of a CpG island methylator phenotype (CIMP)8. Molecular profiling of gastric cancer has been performed using gene expression or DNA sequencing9–12, but has not led to a clear biologic classification scheme. The goals of this study by The Cancer Genome Atlas (TCGA) were to develop a robust molecular classification of gastric cancer and to identify dysregulated pathways and candidate drivers of distinct classes of gastric cancer.

4,583 citations


Journal ArticleDOI
01 Jan 2014-Nature
TL;DR: In this paper, the authors report molecular profiling of 230 resected lung adnocarcinomas using messenger RNA, microRNA and DNA sequencing integrated with copy number, methylation and proteomic analyses.
Abstract: Adenocarcinoma of the lung is the leading cause of cancer death worldwide. Here we report molecular profiling of 230 resected lung adenocarcinomas using messenger RNA, microRNA and DNA sequencing integrated with copy number, methylation and proteomic analyses. High rates of somatic mutation were seen (mean 8.9 mutations per megabase). Eighteen genes were statistically significantly mutated, including RIT1 activating mutations and newly described loss-of-function MGA mutations which are mutually exclusive with focal MYC amplification. EGFR mutations were more frequent in female patients, whereas mutations in RBM10 were more common in males. Aberrations in NF1, MET, ERBB2 and RIT1 occurred in 13% of cases and were enriched in samples otherwise lacking an activated oncogene, suggesting a driver role for these events in certain tumours. DNA and mRNA sequence from the same tumour highlighted splicing alterations driven by somatic genomic changes, including exon 14 skipping in MET mRNA in 4% of cases. MAPK and PI(3)K pathway activity, when measured at the protein level, was explained by known mutations in only a fraction of cases, suggesting additional, unexplained mechanisms of pathway activation. These data establish a foundation for classification and further investigations of lung adenocarcinoma molecular pathogenesis.

4,104 citations


Journal ArticleDOI
16 May 2014-Science
TL;DR: Recent developments in genetic engineering, enhanced extraction methods, and a deeper understanding of the structure of lignin are yielding promising opportunities for efficient conversion of this renewable resource to carbon fibers, polymers, commodity chemicals, and fuels.
Abstract: Background Lignin, nature’s dominant aromatic polymer, is found in most terrestrial plants in the approximate range of 15 to 40% dry weight and provides structural integrity. Traditionally, most large-scale industrial processes that use plant polysaccharides have burned lignin to generate the power needed to productively transform biomass. The advent of biorefineries that convert cellulosic biomass into liquid transportation fuels will generate substantially more lignin than necessary to power the operation, and therefore efforts are underway to transform it to value-added products. Production of biofuels from cellulosic biomass requires separation of large quantities of the aromatic polymer lignin. In planta genetic engineering, enhanced extraction methods, and a deeper understanding of the structure of lignin are yielding promising opportunities for efficient conversion of this renewable resource to carbon fibers, polymers, commodity chemicals, and fuels. [Credit: Oak Ridge National Laboratory, U.S. Department of Energy] Advances Bioengineering to modify lignin structure and/or incorporate atypical components has shown promise toward facilitating recovery and chemical transformation of lignin under biorefinery conditions. The flexibility in lignin monomer composition has proven useful for enhancing extraction efficiency. Both the mining of genetic variants in native populations of bioenergy crops and direct genetic manipulation of biosynthesis pathways have produced lignin feedstocks with unique properties for coproduct development. Advances in analytical chemistry and computational modeling detail the structure of the modified lignin and direct bioengineering strategies for targeted properties. Refinement of biomass pretreatment technologies has further facilitated lignin recovery and enables catalytic modifications for desired chemical and physical properties. Outlook Potential high-value products from isolated lignin include low-cost carbon fiber, engineering plastics and thermoplastic elastomers, polymeric foams and membranes, and a variety of fuels and chemicals all currently sourced from petroleum. These lignin coproducts must be low cost and perform as well as petroleum-derived counterparts. Each product stream has its own distinct challenges. Development of renewable lignin-based polymers requires improved processing technologies coupled to tailored bioenergy crops incorporating lignin with the desired chemical and physical properties. For fuels and chemicals, multiple strategies have emerged for lignin depolymerization and upgrading, including thermochemical treatments and homogeneous and heterogeneous catalysis. The multifunctional nature of lignin has historically yielded multiple product streams, which require extensive separation and purification procedures, but engineering plant feedstocks for greater structural homogeneity and tailored functionality reduces this challenge.

2,958 citations


Journal ArticleDOI
TL;DR: It is proposed that downstream topographical biomarkers of the disease, such as volumetric MRI and fluorodeoxyglucose PET, might better serve in the measurement and monitoring of the course of disease.
Abstract: In the past 8 years, both the International Working Group (IWG) and the US National Institute on Aging-Alzheimer's Association have contributed criteria for the diagnosis of Alzheimer's disease (AD) that better define clinical phenotypes and integrate biomarkers into the diagnostic process, covering the full staging of the disease. This Position Paper considers the strengths and limitations of the IWG research diagnostic criteria and proposes advances to improve the diagnostic framework. On the basis of these refinements, the diagnosis of AD can be simplified, requiring the presence of an appropriate clinical AD phenotype (typical or atypical) and a pathophysiological biomarker consistent with the presence of Alzheimer's pathology. We propose that downstream topographical biomarkers of the disease, such as volumetric MRI and fluorodeoxyglucose PET, might better serve in the measurement and monitoring of the course of disease. This paper also elaborates on the specific diagnostic criteria for atypical forms of AD, for mixed AD, and for the preclinical states of AD.

2,581 citations


Journal ArticleDOI
John N. Weinstein1, Rehan Akbani1, Bradley M. Broom1, Wenyi Wang1  +293 moreInstitutions (30)
01 Jan 2014-Nature
TL;DR: Ch Chromatin regulatory genes were more frequently mutated in urothelial carcinoma than in any other common cancer studied so far, indicating the future possibility of targeted therapy for chromatin abnormalities.
Abstract: Urothelial carcinoma of the bladder is a common malignancy that causes approximately 150,000 deaths per year worldwide. To date, no molecularly targeted agents have been approved for the disease. As part of The Cancer Genome Atlas project, we report here an integrated analysis of 131 urothelial carcinomas to provide a comprehensive landscape of molecular alterations. There were statistically significant recurrent mutations in 32 genes, including multiple genes involved in cell Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#termsThis paper is distributed under the terms of the Creative Commons. Attribution-Non-Commercial-Share Alike license, and the online version of the paper is freely available to all readers.

2,257 citations


Journal ArticleDOI
TL;DR: The improvements the SILVA taxonomy has undergone in the last 3 years are described, focusing on the curation process, the various resources used for curation and the comparison of the SILva taxonomy with Greengenes and RDP-II taxonomies.
Abstract: SILVA (from Latin silva, forest, http://www.arb-silva.de) is a comprehensive resource for up-to-date quality-controlled databases of aligned ribosomal RNA (rRNA) gene sequences from the Bacteria, Archaea and Eukaryota domains and supplementary online services. SILVA provides a manually curated taxonomy for all three domains of life, based on representative phylogenetic trees for the small- and large-subunit rRNA genes. This article describes the improvements the SILVA taxonomy has undergone in the last 3 years. Specifically we are focusing on the curation process, the various resources used for curation and the comparison of the SILVA taxonomy with Greengenes and RDP-II taxonomies. Our comparisons not only revealed a reasonable overlap between the taxa names, but also points to significant differences in both names and numbers of taxa between the three resources.

2,187 citations


Journal ArticleDOI
TL;DR: Refined descriptors that include consideration of disease activity (based on clinical relapse rate and imaging findings) and disease progression are proposed and strategies for future research to better define phenotypes are outlined.
Abstract: Accurate clinical course descriptions (phenotypes) of multiple sclerosis (MS) are important for communication, prognostication, design and recruitment of clinical trials, and treatment decision-making. Standardized descriptions published in 1996 based on a survey of international MS experts provided purely clinical phenotypes based on data and consensus at that time, but imaging and biological correlates were lacking. Increased understanding of MS and its pathology, coupled with general concern that the original descriptors may not adequately reflect more recently identified clinical aspects of the disease, prompted a re-examination of MS disease phenotypes by the International Advisory Committee on Clinical Trials of MS. While imaging and biological markers that might provide objective criteria for separating clinical phenotypes are lacking, we propose refined descriptors that include consideration of disease activity (based on clinical relapse rate and imaging findings) and disease progression. Strategies for future research to better define phenotypes are also outlined.

2,180 citations


Journal ArticleDOI
TL;DR: The modified Varnes classification of landslides has 32 landslide types, each of which is backed by a formal definition as mentioned in this paper, and complex landslides are not included as a separate category type, but composite types can be constructed by the user of the classification by combining two or more type names.
Abstract: The goal of this article is to revise several aspects of the well-known classification of landslides, developed by Varnes (1978). The primary recommendation is to modify the definition of landslide-forming materials, to provide compatibility with accepted geotechnical and geological terminology of rocks and soils. Other, less important modifications of the classification system are suggested, resulting from recent developments of the landslide science. The modified Varnes classification of landslides has 32 landslide types, each of which is backed by a formal definition. The definitions should facilitate backward compatibility of the system as well as possible translation to other languages. Complex landslides are not included as a separate category type, but composite types can be constructed by the user of the classification by combining two or more type names, if advantageous.

1,973 citations


Journal ArticleDOI
TL;DR: An excess of B-mode power over the base lensed-ΛCDM expectation is found in the range 30 < ℓ < 150, inconsistent with the null hypothesis at a significance of >5σ, and it is shown that systematic contamination is much smaller than the observed excess.
Abstract: We report results from the BICEP2 experiment, a cosmic microwave background (CMB) polarimeter specifically designed to search for the signal of inflationary gravitational waves in the B -mode power spectrum around l∼80 . The telescope comprised a 26 cm aperture all-cold refracting optical system equipped with a focal plane of 512 antenna coupled transition edge sensor 150 GHz bolometers each with temperature sensitivity of ≈300 μK CMB s √ . BICEP2 observed from the South Pole for three seasons from 2010 to 2012. A low-foreground region of sky with an effective area of 380 square deg was observed to a depth of 87 nK deg in Stokes Q and U . In this paper we describe the observations, data reduction, maps, simulations, and results. We find an excess of B -mode power over the base lensed-ΛCDM expectation in the range 30 5σ . Through jackknife tests and simulations based on detailed calibration measurements we show that systematic contamination is much smaller than the observed excess. Cross correlating against WMAP 23 GHz maps we find that Galactic synchrotron makes a negligible contribution to the observed signal. We also examine a number of available models of polarized dust emission and find that at their default parameter values they predict power ∼(5–10)× smaller than the observed excess signal (with no significant cross-correlation with our maps). However, these models are not sufficiently constrained by external public data to exclude the possibility of dust emission bright enough to explain the entire excess signal. Cross correlating BICEP2 against 100 GHz maps from the BICEP1 experiment, the excess signal is confirmed with 3σ significance and its spectral index is found to be consistent with that of the CMB, disfavoring dust at 1.7σ . The observed B -mode power spectrum is well fit by a lensed-ΛCDM+tensor theoretical model with tensor-to-scalar ratio r=0.20 +0.07 −0.05 , with r=0 disfavored at 7.0σ . Accounting for the contribution of foreground, dust will shift this value downward by an amount which will be better constrained with upcoming data sets

Book ChapterDOI
TL;DR: In this article, the estimation and interpretation of gravity equations for bilateral trade is discussed, and several theory-consistent estimation methods are presented. But the authors argue against sole reliance on any one method and instead advocate a toolkit approach.
Abstract: This chapter focuses on the estimation and interpretation of gravity equations for bilateral trade. This necessarily involves a careful consideration of the theoretical underpinnings since it has become clear that naive approaches to estimation lead to biased and frequently misinterpreted results. There are now several theory-consistent estimation methods and we argue against sole reliance on any one method and instead advocate a toolkit approach. One estimator may be preferred for certain types of data or research questions but more often the methods should be used in concert to establish robustness. In recent years, estimation has become just a first step before a deeper analysis of the implications of the results, notably in terms of welfare. We try to facilitate diffusion of best-practice methods by illustrating their application in a step-by-step cookbook mode of exposition.

Journal ArticleDOI
Boulos Chalhoub1, Shengyi Liu2, Isobel A. P. Parkin3, Haibao Tang4, Haibao Tang5, Xiyin Wang6, Julien Chiquet1, Harry Belcram1, Chaobo Tong2, Birgit Samans7, Margot Correa8, Corinne Da Silva8, Jérémy Just1, Cyril Falentin9, Chu Shin Koh10, Isabelle Le Clainche1, Maria Bernard8, Pascal Bento8, Benjamin Noel8, Karine Labadie8, Adriana Alberti8, Mathieu Charles9, Dominique Arnaud1, Hui Guo6, Christian Daviaud, Salman Alamery11, Kamel Jabbari12, Kamel Jabbari1, Meixia Zhao13, Patrick P. Edger14, Houda Chelaifa1, David C. Tack15, Gilles Lassalle9, Imen Mestiri1, Nicolas Schnel9, Marie-Christine Le Paslier9, Guangyi Fan, Victor Renault16, Philippe E. Bayer11, Agnieszka A. Golicz11, Sahana Manoli11, Tae-Ho Lee6, Vinh Ha Dinh Thi1, Smahane Chalabi1, Qiong Hu2, Chuchuan Fan17, Reece Tollenaere11, Yunhai Lu1, Christophe Battail8, Jinxiong Shen17, Christine Sidebottom10, Xinfa Wang2, Aurélie Canaguier1, Aurélie Chauveau9, Aurélie Bérard9, G. Deniot9, Mei Guan18, Zhongsong Liu18, Fengming Sun, Yong Pyo Lim19, Eric Lyons20, Christopher D. Town5, Ian Bancroft21, Xiaowu Wang, Jinling Meng17, Jianxin Ma13, J. Chris Pires22, Graham J.W. King23, Dominique Brunel9, Régine Delourme9, Michel Renard9, Jean-Marc Aury8, Keith L. Adams15, Jacqueline Batley24, Jacqueline Batley11, Rod J. Snowdon7, Jörg Tost, David Edwards11, David Edwards24, Yongming Zhou17, Wei Hua2, Andrew G. Sharpe10, Andrew H. Paterson6, Chunyun Guan18, Patrick Wincker8, Patrick Wincker25, Patrick Wincker1 
22 Aug 2014-Science
TL;DR: The polyploid genome of Brassica napus, which originated from a recent combination of two distinct genomes approximately 7500 years ago and gave rise to the crops of rape oilseed, is sequenced.
Abstract: Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent An and Cn subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement.

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, M. I. R. Alves2, C. Armitage-Caplan3  +469 moreInstitutions (89)
TL;DR: The European Space Agency's Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009 as discussed by the authors.
Abstract: The European Space Agency’s Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009. In March 2013, ESA and the Planck Collaboration released the initial cosmology products based on the first 15.5 months of Planck data, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the mission and its performance, the processing, analysis, and characteristics of the data, the scientific results, and the science data products and papers in the release. The science products include maps of the cosmic microwave background (CMB) and diffuse extragalactic foregrounds, a catalogue of compact Galactic and extragalactic sources, and a list of sources detected through the Sunyaev-Zeldovich effect. The likelihood code used to assess cosmological models against the Planck data and a lensing likelihood are described. Scientific results include robust support for the standard six-parameter ΛCDM model of cosmology and improved measurements of its parameters, including a highly significant deviation from scale invariance of the primordial power spectrum. The Planck values for these parameters and others derived from them are significantly different from those previously determined. Several large-scale anomalies in the temperature distribution of the CMB, first detected by WMAP, are confirmed with higher confidence. Planck sets new limits on the number and mass of neutrinos, and has measured gravitational lensing of CMB anisotropies at greater than 25σ. Planck finds no evidence for non-Gaussianity in the CMB. Planck’s results agree well with results from the measurements of baryon acoustic oscillations. Planck finds a lower Hubble constant than found in some more local measures. Some tension is also present between the amplitude of matter fluctuations (σ8) derived from CMB data and that derived from Sunyaev-Zeldovich data. The Planck and WMAP power spectra are offset from each other by an average level of about 2% around the first acoustic peak. Analysis of Planck polarization data is not yet mature, therefore polarization results are not released, although the robust detection of E-mode polarization around CMB hot and cold spots is shown graphically.

Journal ArticleDOI
27 Mar 2014-Nature
TL;DR: For example, the authors mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body.
Abstract: Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body We find that few genes are truly 'housekeeping', whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research

Journal ArticleDOI
TL;DR: All data manually curated by the MINT curators have been moved into the IntAct database at EMBL-EBI and are merged with the existing IntAct dataset.
Abstract: IntAct (freely available at http://www.ebi.ac.uk/intact) is an open-source, open data molecular interaction database populated by data either curated from the literature or from direct data depositions. IntAct has developed a sophisticated web-based curation tool, capable of supporting both IMEx- and MIMIx-level curation. This tool is now utilized by multiple additional curation teams, all of whom annotate data directly into the IntAct database. Members of the IntAct team supply appropriate levels of training, perform quality control on entries and take responsibility for long-term data maintenance. Recently, the MINT and IntAct databases decided to merge their separate efforts to make optimal use of limited developer resources and maximize the curation output. All data manually curated by the MINT curators have been moved into the IntAct database at EMBL-EBI and are merged with the existing IntAct dataset. Both IntAct and MINT are active contributors to the IMEx consortium (http://www.imexconsortium.org).

Journal ArticleDOI
TL;DR: Characterization of unannotated and uncharacterized protein segments is expected to lead to the discovery of novel functions as well as provide important insights into existing biological processes and is likely to shed new light on molecular mechanisms of diseases that are not yet fully understood.
Abstract: 1.1. Uncharacterized Protein Segments Are a Source of Functional Novelty Over the past decade, we have observed a massive increase in the amount of information describing protein sequences from a variety of organisms.1,2 While this may reflect the diversity in sequence space, and possibly also in function space,3 a large proportion of the sequences lacks any useful function annotation.4,5 Often these sequences are annotated as putative or hypothetical proteins, and for the majority their functions still remain unknown.6,7 Suggestions about potential protein function, primarily molecular function, often come from computational analysis of their sequences. For instance, homology detection allows for the transfer of information from well-characterized protein segments to those with similar sequences that lack annotation of molecular function.8−10 Other aspects of function, such as the biological processes proteins participate in, may come from genetic- and disease-association studies, expression and interaction network data, and comparative genomics approaches that investigate genomic context.11−17 Characterization of unannotated and uncharacterized protein segments is expected to lead to the discovery of novel functions as well as provide important insights into existing biological processes. In addition, it is likely to shed new light on molecular mechanisms of diseases that are not yet fully understood. Thus, uncharacterized protein segments are likely to be a large source of functional novelty relevant for discovering new biology.

Journal ArticleDOI
TL;DR: A fine particulate mass–based RR model that covered the global range of exposure by integrating RR information from different combustion types that generate emissions of particulate matter is developed.
Abstract: Background: Estimating the burden of disease attributable to long-term exposure to fine particulate matter (PM2.5) in ambient air requires knowledge of both the shape and magnitude of the relative ...

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, Frederico Arroja4  +321 moreInstitutions (79)
TL;DR: In this article, the authors present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey.
Abstract: We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey, which includes more than twice the integration time of the nominal survey used for the 2013 release papers. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be ns = 0.968 ± 0.006 and tightly constrain its scale dependence to dns/ dlnk = −0.003 ± 0.007 when combined with the Planck lensing likelihood. When the Planck high-l polarization data are included, the results are consistent and uncertainties are further reduced. The upper bound on the tensor-to-scalar ratio is r0.002< 0.11 (95% CL). This upper limit is consistent with the B-mode polarization constraint r< 0.12 (95% CL) obtained from a joint analysis of the BICEP2/Keck Array and Planck data. These results imply that V(φ) ∝ φ2 and natural inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as R2 inflation. We search for several physically motivated deviations from a simple power-law spectrum of curvature perturbations, including those motivated by a reconstruction of the inflaton potential not relying on the slow-roll approximation. We find that such models are not preferred, either according to a Bayesian model comparison or according to a frequentist simulation-based analysis. Three independent methods reconstructing the primordial power spectrum consistently recover a featureless and smooth over the range of scales 0.008 Mpc-1 ≲ k ≲ 0.1 Mpc-1. At large scales, each method finds deviations from a power law, connected to a deficit at multipoles l ≈ 20−40 in the temperature power spectrum, but at an uncompelling statistical significance owing to the large cosmic variance present at these multipoles. By combining power spectrum and non-Gaussianity bounds, we constrain models with generalized Lagrangians, including Galileon models and axion monodromy models. The Planck data are consistent with adiabatic primordial perturbations, and the estimated values for the parameters of the base Λ cold dark matter (ΛCDM) model are not significantly altered when more general initial conditions are admitted. In correlated mixed adiabatic and isocurvature models, the 95% CL upper bound for the non-adiabatic contribution to the observed CMB temperature variance is | αnon - adi | < 1.9%, 4.0%, and 2.9% for CDM, neutrino density, and neutrino velocity isocurvature modes, respectively. We have tested inflationary models producing an anisotropic modulation of the primordial curvature power spectrum findingthat the dipolar modulation in the CMB temperature field induced by a CDM isocurvature perturbation is not preferred at a statistically significant level. We also establish tight constraints on a possible quadrupolar modulation of the curvature perturbation. These results are consistent with the Planck 2013 analysis based on the nominal mission data and further constrain slow-roll single-field inflationary models, as expected from the increased precision of Planck data using the full set of observations.

Journal ArticleDOI
TL;DR: Global rates of change suggest that only 16 countries will achieve the MDG 5 target by 2015, with evidence of continued acceleration in the MMR, and MMR was highest in the oldest age groups in both 1990 and 2013.

Journal ArticleDOI
TL;DR: It is shown that the optimal nearest neighbor algorithm and its parameters depend on the data set characteristics and an automated configuration procedure for finding the best algorithm to search a particular data set is described.
Abstract: For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of many computer vision and machine learning algorithms consists of finding nearest neighbor matches to high dimensional vectors that represent the training data. We propose new algorithms for approximate nearest neighbor matching and evaluate and compare them with previous algorithms. For matching high dimensional features, we find two algorithms to be the most efficient: the randomized k-d forest and a new algorithm proposed in this paper, the priority search k-means tree. We also propose a new algorithm for matching binary features by searching multiple hierarchical clustering trees and show it outperforms methods typically used in the literature. We show that the optimal nearest neighbor algorithm and its parameters depend on the data set characteristics and describe an automated configuration procedure for finding the best algorithm to search a particular data set. In order to scale to very large data sets that would otherwise not fit in the memory of a single machine, we propose a distributed nearest neighbor matching framework that can be used with any of the algorithms described in the paper. All this research has been released as an open source library called fast library for approximate nearest neighbors (FLANN), which has been incorporated into OpenCV and is now one of the most popular libraries for nearest neighbor matching.

Journal ArticleDOI
TL;DR: The Short Dark Triad (SD3) is developed and validated, a brief proxy measure that provides efficient, reliable, and valid measures of the DarkTriad of personalities.
Abstract: Three socially aversive traits—Machiavellianism, narcissism, and psychopathy—have been studied as an overlapping constellation known as the Dark Triad. Here, we develop and validate the Short Dark Triad (SD3), a brief proxy measure. Four studies (total N = 1,063) examined the structure, reliability, and validity of the subscales in both community and student samples. In Studies 1 and 2, structural analyses yielded three factors with the final 27 items loading appropriately on their respective factors. Study 3 confirmed that the resulting SD3 subscales map well onto the longer standard measures. Study 4 validated the SD3 subscales against informant ratings. Together, these studies indicate that the SD3 provides efficient, reliable, and valid measures of the Dark Triad of personalities.

Journal ArticleDOI
TL;DR: In this paper, the authors provide guidelines for QSAR development, validation, and application, which are summarized in best practices for building rigorously validated and externally predictive quantitative structure-activity relationship models.
Abstract: Quantitative structure–activity relationship modeling is one of the major computational tools employed in medicinal chemistry. However, throughout its entire history it has drawn both praise and criticism concerning its reliability, limitations, successes, and failures. In this paper, we discuss (i) the development and evolution of QSAR; (ii) the current trends, unsolved problems, and pressing challenges; and (iii) several novel and emerging applications of QSAR modeling. Throughout this discussion, we provide guidelines for QSAR development, validation, and application, which are summarized in best practices for building rigorously validated and externally predictive QSAR models. We hope that this Perspective will help communications between computational and experimental chemists toward collaborative development and use of QSAR models. We also believe that the guidelines presented here will help journal editors and reviewers apply more stringent scientific standards to manuscripts reporting new QSAR stu...

Journal ArticleDOI
TL;DR: There is growing scientific evidence supporting the use of biostimulants as agricultural inputs on diverse plant species, such as increased root growth, enhanced nutrient uptake, and stress tolerance.
Abstract: Plant biostimulants are diverse substances and microorganisms used to enhance plant growth. The global market for biostimulants is projected to increase 12 % per year and reach over $2,200 million by 2018. Despite the growing use of biostimulants in agriculture, many in the scientific community consider biostimulants to be lacking peer-reviewed scientific evaluation. This article describes the emerging definitions of biostimulants and reviews the literature on five categories of biostimulants: i. microbial inoculants, ii. humic acids, iii. fulvic acids, iv. protein hydrolysates and amino acids, and v. seaweed extracts. The large number of publications cited for each category of biostimulants demonstrates that there is growing scientific evidence supporting the use of biostimulants as agricultural inputs on diverse plant species. The cited literature also reveals some commonalities in plant responses to different biostimulants, such as increased root growth, enhanced nutrient uptake, and stress tolerance.

Journal ArticleDOI
TL;DR: Although S7 cells are not fully equivalent to mature beta cells, their capacity for glucose-responsive insulin secretion and rapid reversal of diabetes in vivo makes them a promising alternative to pancreatic progenitor cells or cadaveric islets for the treatment of diabetes.
Abstract: Transplantation of pancreatic progenitors or insulin-secreting cells derived from human embryonic stem cells (hESCs) has been proposed as a therapy for diabetes. We describe a seven-stage protocol that efficiently converts hESCs into insulin-producing cells. Stage (S) 7 cells expressed key markers of mature pancreatic beta cells, including MAFA, and displayed glucose-stimulated insulin secretion similar to that of human islets during static incubations in vitro. Additional characterization using single-cell imaging and dynamic glucose stimulation assays revealed similarities but also notable differences between S7 insulin-secreting cells and primary human beta cells. Nevertheless, S7 cells rapidly reversed diabetes in mice within 40 days, roughly four times faster than pancreatic progenitors. Therefore, although S7 cells are not fully equivalent to mature beta cells, their capacity for glucose-responsive insulin secretion and rapid reversal of diabetes in vivo makes them a promising alternative to pancreatic progenitor cells or cadaveric islets for the treatment of diabetes.

Journal ArticleDOI
06 Feb 2014-Nature
TL;DR: It is shown that woody clades successfully moved into freezing-prone environments by either possessing transport networks of small safe conduits and/or shutting down hydraulic function by dropping leaves during freezing.
Abstract: Early flowering plants are thought to have been woody species restricted to warm habitats 1–3 . This lineage has since radiated into almost every climate, with manifold growth forms 4 . As angiosperms spread and climate changed, they evolved mechanisms to cope with episodic freezing. To explore the evolution of traits underpinning the ability to persist in freezing conditions, we assembled a large species-level database of growth habit (woody or herbaceous; 49,064 species), as well as leaf phenology (evergreen or deciduous), diameter of hydraulic conduits (that is, xylem vessels and tracheids) and climate occupancies (exposure to freezing). To model the evolution of species’ traits and climate occupancies, we combined these data with an unparalleled dated molecular phylogeny (32,223 species) for land plants. Here we show that woody clades successfully move di nto freezingprone environments by either possessing transport networks of small

Journal ArticleDOI
TL;DR: For instance, the authors defined sensemaking as the process through which people work to understand issues or events that are novel, ambiguous, confusing, or in some other way violate expectations.
Abstract: Sensemaking is the process through which people work to understand issues or events that are novel, ambiguous, confusing, or in some other way violate expectations. As an activity central to organizing, sensemaking has been the subject of considerable research which has intensified over the last decade. We begin this review with a historical overview of the field, and develop a definition of sensemaking rooted in recurrent themes from the literature. We then review and integrate existing theory and research, focusing on two key bodies of work. The first explores how sensemaking is accomplished, unpacking the sensemaking process by examining how events become triggers for sensemaking, how intersubjective meaning is created, and the role of action in sensemaking. The second body considers how sensemaking enables the accomplishment of other key organizational processes, such organizational change, learning, and creativity and innovation. The final part of the chapter draws on areas of difference and debate h...

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, C. Armitage-Caplan3, Monique Arnaud4  +273 moreInstitutions (59)
TL;DR: In this article, the authors characterized the effective beams, the effective beam window functions and the associated errors for the Planck High Frequency Instrument (HFI) detectors, including the effect of the optics, detectors, data processing and the scan strategy.
Abstract: This paper characterizes the effective beams, the effective beam window functions and the associated errors for the Planck High Frequency Instrument (HFI) detectors. The effective beam is the angular response including the effect of the optics, detectors, data processing and the scan strategy. The window function is the representation of this beam in the harmonic domain which is required to recover an unbiased measurement of the cosmic microwave background angular power spectrum. The HFI is a scanning instrument and its effective beams are the convolution of: a) the optical response of the telescope and feeds; b) the processing of the time-ordered data and deconvolution of the bolometric and electronic transfer function; and c) the merging of several surveys to produce maps. The time response transfer functions are measured using observations of Jupiter and Saturn and by minimizing survey difference residuals. The scanning beam is the post-deconvolution angular response of the instrument, and is characterized with observations of Mars. The main beam solid angles are determined to better than 0.5% at each HFI frequency band. Observations of Jupiter and Saturn limit near sidelobes (within 5 degrees) to about 0.1% of the total solid angle. Time response residuals remain as long tails in the scanning beams, but contribute less than 0.1% of the total solid angle. The bias and uncertainty in the beam products are estimated using ensembles of simulated planet observations that include the impact of instrumental noise and known systematic effects. The correlation structure of these ensembles is well-described by five errors eigenmodes that are sub-dominant to sample variance and instrumental noise in the harmonic domain. A suite of consistency tests provide confidence that the error model represents a sufficient description of the data. The total error in the effective beam window functions is below 1% at 100 GHz up to multiple l similar to 1500, below 0.5% at 143 and 217 GHz up to l similar to 2000.

Journal ArticleDOI
TL;DR: A novel edge caching scheme based on the concept of content-centric networking or information-centric networks is proposed and evaluated, using trace-driven simulations to evaluate the performance of the proposed scheme and validate the various advantages of the utilization of caching content in 5G mobile networks.
Abstract: The demand for rich multimedia services over mobile networks has been soaring at a tremendous pace over recent years. However, due to the centralized architecture of current cellular networks, the wireless link capacity as well as the bandwidth of the radio access networks and the backhaul network cannot practically cope with the explosive growth in mobile traffic. Recently, we have observed the emergence of promising mobile content caching and delivery techniques, by which popular contents are cached in the intermediate servers (or middleboxes, gateways, or routers) so that demands from users for the same content can be accommodated easily without duplicate transmissions from remote servers; hence, redundant traffic can be significantly eliminated. In this article, we first study techniques related to caching in current mobile networks, and discuss potential techniques for caching in 5G mobile networks, including evolved packet core network caching and radio access network caching. A novel edge caching scheme based on the concept of content-centric networking or information-centric networking is proposed. Using trace-driven simulations, we evaluate the performance of the proposed scheme and validate the various advantages of the utilization of caching content in 5G mobile networks. Furthermore, we conclude the article by exploring new relevant opportunities and challenges.