scispace - formally typeset
Search or ask a question
Institution

University of British Columbia

EducationVancouver, British Columbia, Canada
About: University of British Columbia is a education organization based out in Vancouver, British Columbia, Canada. It is known for research contribution in the topics: Population & Poison control. The organization has 89939 authors who have published 209679 publications receiving 9226862 citations. The organization is also known as: UBC & The University of British Columbia.


Papers
More filters
Journal ArticleDOI
TL;DR: Evidence from 6 experiments supports the social reconnection hypothesis, which posits that the experience of social exclusion increases the motivation to forge social bonds with new sources of potential affiliation.
Abstract: Evidence from 6 experiments supports the social reconnection hypothesis, which posits that the experience of social exclusion increases the motivation to forge social bonds with new sources of potential affiliation. Threat of social exclusion led participants to express greater interest in making new friends, to increase their desire to work with others, to form more positive impressions of novel social targets, and to assign greater rewards to new interaction partners. Findings also suggest potential boundary conditions to the social reconnection hypothesis. Excluded individuals did not seem to seek reconnection with the specific perpetrators of exclusion or with novel partners with whom no face-to-face interaction was anticipated. Furthermore, fear of negative evaluation moderated responses to exclusion such that participants low in fear of negative evaluation responded to new interaction partners in an affiliative fashion, whereas participants high in fear of negative evaluation did not.

985 citations

Journal ArticleDOI
TL;DR: This article examined the location choices of 751 Japanese manufacturing plants built in the United States since 1980 and found that industry-level agglomeration benefits played an important role in location decisions.

984 citations

Journal ArticleDOI
TL;DR: In this paper, a new division of landslide materials is proposed, based on genetic and morphological aspects rather than arbitrary grain-size limits, which would allow the terms to be retained with their original meanings while making their application less ambiguous.
Abstract: As a result of the widespread use of the landslide classifications of Varnes (1978), and Hutchinson (1988), certain terms describing common types of flow-like mass movements have become entrenched in the language of engineering geology. Example terms include debris flow, debris avalanche and mudslide. Here, more precise definitions of the terms are proposed, which would allow the terms to be retained with their original meanings while making their application less ambiguous. A new division of landslide materials is proposed, based on genetic and morphological aspects rather than arbitrary grain-size limits. The basic material groups include sorted materials: gravel, sand, silt, and clay, unsorted materials: debris, earth and mud, peat and rock. Definitions are proposed for relatively slow non-liquefied sand or gravel flows, extremely rapid sand, silt or debris flow slides accompanied by liquefaction, clay flow slides involving extra-sensitive clays, peat flows, slow to rapid earth flows in nonsensitive plastic clays, debris flows which occur in steep established channels or gullies, mud flows considered as cohesive debris flows, debris floods involving massive sediment transport at limited discharges, debris avalanches which occur on open hill slopes and rock avalanches formed by large scale failures of bedrock.

984 citations

Journal ArticleDOI
TL;DR: The proposed ECOSIM approach will enable a wide range of potential users to conduct fisheries policy analyses that explicitly account for ecosystem trophic interactions, without requiring the users to engage in complex modelling or information gathering much beyond that required for ECOPATH.
Abstract: The linear equations that describe trophic fluxes in mass-balance, equilibrium assessments of ecosystems (such as in the ECOPATH approach) can be re-expressed as differential equations defining trophic interactions as dynamic relationships varying with biomasses and harvest regimes. Time patterns of biomass predicted by these differential equations, and equilibrium system responses under different exploitation regimes, are found by setting the differential equations equal to zero and solving for biomasses at different levels of fishing mortality. Incorporation of our approach as the ECOSIM routine into the well-documented ECOPATH software will enable a wide range of potential users to conduct fisheries policy analyses that explicitly account for ecosystem trophic interactions, without requiring the users to engage in complex modelling or information gathering much beyond that required for ECOPATH. While the ECOSIM predictions can be expected to fail under fishing regimes very different from those leading to the ECOPATH input data, ECOSIM will at least indicate likely directions of biomass change in various trophic groups under incremental experimental policies aimed at improving overall ecosystem management. That is, ECOSIM can be a valuable tool for design of ecosystem-scale adaptive management experiments

984 citations

Proceedings ArticleDOI
08 May 2017
TL;DR: In this paper, a relatively simple deep feed-forward network was proposed to estimate 3D human pose from 2D joint locations with a remarkably low error rate, achieving state-of-the-art results on Human3.6M.
Abstract: Following the success of deep convolutional networks, state-of-the-art methods for 3d human pose estimation have focused on deep end-to-end systems that predict 3d joint locations given raw image pixels. Despite their excellent performance, it is often not easy to understand whether their remaining error stems from a limited 2d pose (visual) understanding, or from a failure to map 2d poses into 3- dimensional positions.,,With the goal of understanding these sources of error, we set out to build a system that given 2d joint locations predicts 3d positions. Much to our surprise, we have found that, with current technology, "lifting" ground truth 2d joint locations to 3d space is a task that can be solved with a remarkably low error rate: a relatively simple deep feedforward network outperforms the best reported result by about 30% on Human3.6M, the largest publicly available 3d pose estimation benchmark. Furthermore, training our system on the output of an off-the-shelf state-of-the-art 2d detector (i.e., using images as input) yields state of the art results – this includes an array of systems that have been trained end-to-end specifically for this task. Our results indicate that a large portion of the error of modern deep 3d pose estimation systems stems from their visual analysis, and suggests directions to further advance the state of the art in 3d human pose estimation.

983 citations


Authors

Showing all 90682 results

NameH-indexPapersCitations
Gordon H. Guyatt2311620228631
John C. Morris1831441168413
Douglas Scott1781111185229
John R. Yates1771036129029
Deborah J. Cook173907148928
Richard A. Gibbs172889249708
Evan E. Eichler170567150409
James F. Sallis169825144836
Michael Snyder169840130225
Jiawei Han1681233143427
Michael Kramer1671713127224
Bruce L. Miller1631153115975
Peter A. R. Ade1621387138051
Marc W. Kirschner162457102145
Kaj Blennow1601845116237
Network Information
Related Institutions (5)
University of Toronto
294.9K papers, 13.5M citations

99% related

University of Minnesota
257.9K papers, 11.9M citations

96% related

University of Washington
305.5K papers, 17.7M citations

96% related

University of California, San Diego
204.5K papers, 12.3M citations

96% related

Cornell University
235.5K papers, 12.2M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023307
20221,209
202113,228
202012,052
201910,934