scispace - formally typeset
Search or ask a question
Institution

University of Buea

EducationBuea, Cameroon
About: University of Buea is a education organization based out in Buea, Cameroon. It is known for research contribution in the topics: Population & Malaria. The organization has 1882 authors who have published 2599 publications receiving 36781 citations. The organization is also known as: the place to be & anglophone state university.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a survey of more than 9,000 farmers across 11 African countries, a cross-sectional approach was used to estimate how farm net revenues are affected by climate change compared with current mean temperature.
Abstract: Measurement of the likely magnitude of the economic impact of climate change on African agriculture has been a challenge. Using data from a survey of more than 9,000 farmers across 11 African countries, a cross-sectional approach estimates how farm net revenues are affected by climate change compared with current mean temperature. Revenues fall with warming for dryland crops (temperature elasticity of -1.9) and livestock (-5.4), whereas revenues rise for irrigated crops (elasticity of 0.5), which are located in relatively cool parts of Africa and are buffered by irrigation from the effects of warming. At first, warming has little net aggregate effect as the gains for irrigated crops offset the losses for dryland crops and livestock. Warming, however, will likely reduce dryland farm income immediately. The final effects will also depend on changes in precipitation, because revenues from all farm types increase with precipitation. Because irrigated farms are less sensitive to climate, where water is available, irrigation is a practical adaptation to climate change in Africa.

541 citations

Journal ArticleDOI
TL;DR: It was found that most pyrosequencing singletons were artifactual and contained a strongly elevated proportion of insertions compared with natural intra- and interspecific variation, which influenced the richness and community composition as recovered by pyro sequencing.
Abstract: • Compared with Sanger sequencing-based methods, pyrosequencing provides orders of magnitude more data on the diversity of organisms in their natural habitat, but its technological biases and relative accuracy remain poorly understood. • This study compares the performance of pyrosequencing and traditional sequencing for species' recovery of ectomycorrhizal fungi on root tips in a Cameroonian rain forest and addresses biases related to multi-template PCR and pyrosequencing analyses. • Pyrosequencing and the traditional method yielded qualitatively similar results, but there were slight, but significant, differences that affected the taxonomic view of the fungal community. We found that most pyrosequencing singletons were artifactual and contained a strongly elevated proportion of insertions compared with natural intra- and interspecific variation. The alternative primers, DNA extraction methods and PCR replicates strongly influenced the richness and community composition as recovered by pyrosequencing. • Pyrosequencing offers a powerful alternative for the identification of ectomycorrhizal fungi in pooled root samples, but requires careful selection of molecular tools. A well-populated backbone database facilitates the detection of biological and technical artifacts. The pyrosequencing pipeline is available at http://unite.ut.ee/454pipeline.tgz.

521 citations

Journal ArticleDOI
Kristina J. Anderson-Teixeira1, Kristina J. Anderson-Teixeira2, Stuart J. Davies3, Stuart J. Davies1, Amy C. Bennett2, Erika Gonzalez-Akre2, Helene C. Muller-Landau1, S. Joseph Wright1, Kamariah Abu Salim, Angelica M. Almeyda Zambrano4, Angelica M. Almeyda Zambrano5, Angelica M. Almeyda Zambrano2, Alfonso Alonso2, Jennifer L. Baltzer6, Yves Basset1, Norman A. Bourg2, Eben N. Broadbent4, Eben N. Broadbent5, Eben N. Broadbent2, Warren Y. Brockelman7, Sarayudh Bunyavejchewin8, David F. R. P. Burslem9, Nathalie Butt10, Nathalie Butt11, Min Cao12, Dairon Cárdenas, George B. Chuyong13, Keith Clay14, Susan Cordell15, H. S. Dattaraja16, Xiaobao Deng12, Matteo Detto1, Xiaojun Du17, Alvaro Duque18, David L. Erikson3, Corneille E. N. Ewango, Gunter A. Fischer, Christine Fletcher19, Robin B. Foster, Christian P. Giardina15, Gregory S. Gilbert1, Gregory S. Gilbert20, Nimal Gunatilleke21, Savitri Gunatilleke21, Zhanqing Hao17, William W. Hargrove15, Terese B. Hart, Billy C.H. Hau22, Fangliang He23, Forrest M. Hoffman24, Robert W. Howe25, Stephen P. Hubbell26, Stephen P. Hubbell1, Faith Inman-Narahari27, Patrick A. Jansen28, Patrick A. Jansen1, Mingxi Jiang17, Daniel J. Johnson14, Mamoru Kanzaki29, Abdul Rahman Kassim19, David Kenfack3, David Kenfack1, Staline Kibet30, Margaret F. Kinnaird31, Lisa Korte2, Kamil Král, Jitendra Kumar24, Andrew J. Larson32, Yide Li, Xiankun Li17, Shirong Liu, Shawn K. Y. Lum33, James A. Lutz34, Keping Ma17, Damian M. Maddalena24, Jean-Remy Makana31, Yadvinder Malhi10, Toby R. Marthews10, Rafizah Mat Serudin, Sean M. McMahon1, Sean M. McMahon35, William J. McShea2, Hervé Memiaghe36, Xiangcheng Mi17, Takashi Mizuno29, Michael D. Morecroft37, Jonathan Myers38, Vojtech Novotny39, Alexandre Adalardo de Oliveira40, Perry S. Ong41, David A. Orwig42, Rebecca Ostertag43, Jan den Ouden28, Geoffrey G. Parker35, Richard P. Phillips14, Lawren Sack26, Moses N. Sainge, Weiguo Sang17, Kriangsak Sri-ngernyuang44, Raman Sukumar16, I-Fang Sun45, Witchaphart Sungpalee44, H. S. Suresh16, Sylvester Tan, Sean C. Thomas46, Duncan W. Thomas47, Jill Thompson48, Benjamin L. Turner1, María Uriarte49, Renato Valencia50, Marta I. Vallejo, Alberto Vicentini51, Tomáš Vrška, Xihua Wang52, Xugao Wang, George D. Weiblen53, Amy Wolf25, Han Xu, Sandra L. Yap41, Jess K. Zimmerman48 
Smithsonian Tropical Research Institute1, Smithsonian Conservation Biology Institute2, National Museum of Natural History3, University of Alabama4, Stanford University5, Wilfrid Laurier University6, Mahidol University7, Department of National Parks, Wildlife and Plant Conservation8, University of Aberdeen9, Environmental Change Institute10, University of Queensland11, Xishuangbanna Tropical Botanical Garden12, University of Buea13, Indiana University14, United States Forest Service15, Indian Institute of Science16, Chinese Academy of Sciences17, National University of Colombia18, Forest Research Institute Malaysia19, University of California, Santa Cruz20, University of Peradeniya21, University of Hong Kong22, University of Alberta23, Oak Ridge National Laboratory24, University of Wisconsin–Green Bay25, University of California, Los Angeles26, College of Tropical Agriculture and Human Resources27, Wageningen University and Research Centre28, Kyoto University29, University of Nairobi30, Wildlife Conservation Society31, University of Montana32, Nanyang Technological University33, Utah State University34, Smithsonian Environmental Research Center35, Centre national de la recherche scientifique36, Natural England37, Washington University in St. Louis38, Academy of Sciences of the Czech Republic39, University of São Paulo40, University of the Philippines Diliman41, Harvard University42, University of Hawaii at Hilo43, Maejo University44, National Dong Hwa University45, University of Toronto46, Washington State University Vancouver47, University of Puerto Rico, Río Piedras48, Columbia University49, Pontificia Universidad Católica del Ecuador50, National Institute of Amazonian Research51, East China Normal University52, University of Minnesota53
TL;DR: The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.
Abstract: Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25ha), all stems 1cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO spans 25 degrees S-61 degrees N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS-ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 degrees C), changes in precipitation (up to +/- 30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8g Nm(-2)yr(-1) and 3.1g Sm(-2)yr(-1)), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5km). The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS-ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.

470 citations

Journal ArticleDOI
TL;DR: A meta-analysis of carbon-nutrient-climate relationships in 113 sites across the tropical forest biome showed that mean annual temperature was the strongest predictor of aboveground NPP (ANPP) across all tropical forests, but this relationship was driven by distinct temperature differences between upland and lowland forests.
Abstract: Tropical rain forests play a dominant role in global biosphere-atmosphere CO2 exchange. Although climate and nutrient availability regulate net primary production (NPP) and decomposition in all terrestrial ecosystems, the nature and extent of such controls in tropical forests remain poorly resolved. We conducted a meta-analysis of carbon-nutrient-climate relationships in 113 sites across the tropical forest biome. Our analyses showed that mean annual temperature was the strongest predictor of aboveground NPP (ANPP) across all tropical forests, but this relationship was driven by distinct temperature differences between upland and lowland forests. Within lowland forests (< 1000 m), a regression tree analysis revealed that foliar and soil-based measurements of phosphorus (P) were the only variables that explained a significant proportion of the variation in ANPP, although the relationships were weak. However, foliar P, foliar nitrogen (N), litter decomposition rate (k), soil N and soil respiration were all directly related with total surface (0‐10 cm) soil P concentrations. Our analysis provides some evidence that P availability regulates NPP and other ecosystem processes in lowland tropical forests, but more importantly, underscores the need for a series of large-scale nutrient manipulations ‐ especially in lowland forests ‐ to elucidate the most important nutrient interactions and controls.

410 citations

Journal ArticleDOI
Wannes Hubau1, Wannes Hubau2, Wannes Hubau3, Simon L. Lewis4, Simon L. Lewis1, Oliver L. Phillips1, Kofi Affum-Baffoe5, Hans Beeckman2, Aida Cuni-Sanchez6, Aida Cuni-Sanchez4, Armandu K. Daniels, Corneille E. N. Ewango7, Corneille E. N. Ewango8, Sophie Fauset9, Jaccques M. Mukinzi10, Jaccques M. Mukinzi8, Douglas Sheil11, Bonaventure Sonké12, Martin J. P. Sullivan13, Martin J. P. Sullivan1, Terry Sunderland14, Terry Sunderland15, Hermann Taedoumg16, Hermann Taedoumg12, Sean C. Thomas17, Lee J. T. White18, Katharine Abernethy18, Stephen Adu-Bredu19, C. Amani15, Timothy R. Baker1, Lindsay F. Banin, Fidèle Baya, Serge K. Begne12, Serge K. Begne1, Amy C. Bennett1, Fabrice Bénédet20, Fabrice Bénédet21, Robert Bitariho22, Yannick Enock Bocko23, Pascal Boeckx3, Patrick Boundja8, Patrick Boundja15, Roel J. W. Brienen1, Terry Brncic8, Eric Chezeaux, George B. Chuyong24, Connie J. Clark25, Murray Collins26, James A. Comiskey27, James A. Comiskey28, David A. Coomes29, Greta C. Dargie1, Thalès de Haulleville2, Marie Noel Djuikouo Kamdem24, Jean-Louis Doucet30, Adriane Esquivel-Muelbert31, Adriane Esquivel-Muelbert1, Ted R. Feldpausch32, Alusine Fofanah, Ernest G. Foli19, Martin Gilpin1, Emanuel Gloor1, Christelle Gonmadje, Sylvie Gourlet-Fleury20, Sylvie Gourlet-Fleury21, Jefferson S. Hall33, Alan Hamilton34, David Harris35, Terese B. Hart36, Terese B. Hart37, Mireille Breuer-Ndoundou Hockemba8, Annette Hladik, Suspense Averti Ifo23, Kathryn J. Jeffery18, Tommaso Jucker38, Emmanuel Kasongo Yakusu7, Emmanuel Kasongo Yakusu3, Emmanuel Kasongo Yakusu2, Elizabeth Kearsley2, Elizabeth Kearsley3, David Kenfack33, Alexander K. Koch39, Alexander K. Koch4, Miguel E. Leal8, Aurora Levesley1, Jeremy A. Lindsell40, Janvier Lisingo7, Gabriela Lopez-Gonzalez1, Jon C. Lovett41, Jon C. Lovett1, Jean-Remy Makana7, Yadvinder Malhi42, Andrew R. Marshall6, Andrew R. Marshall43, Jim Martin44, Emanuel H. Martin, Faustin M. Mbayu7, Vincent P. Medjibe25, Vianet Mihindou, Edward T. A. Mitchard26, Sam Moore42, Pantaleo K. T. Munishi45, Natacha Nssi Bengone, Lucas Ojo, Fidèle Evouna Ondo, Kelvin S.-H. Peh46, Kelvin S.-H. Peh29, Georgia Pickavance1, Axel Dalberg Poulsen35, John R. Poulsen25, Lan Qie1, Lan Qie47, Jan Reitsma, Francesco Rovero48, Michael D. Swaine49, Joey Talbot1, James Taplin50, David Taylor51, Duncan W. Thomas52, Benjamin Toirambe2, John Tshibamba Mukendi2, John Tshibamba Mukendi7, Darlington Tuagben, Peter M. Umunay53, Peter M. Umunay8, Geertje M. F. van der Heijden54, Hans Verbeeck3, Jason Vleminckx55, Jason Vleminckx56, Simon Willcock57, Hannsjörg Wöll, John T. Woods58, Lise Zemagho12 
University of Leeds1, Royal Museum for Central Africa2, Ghent University3, University College London4, Forestry Commission5, University of York6, University of Kisangani7, Wildlife Conservation Society8, University of Plymouth9, World Wide Fund for Nature10, Norwegian University of Life Sciences11, University of Yaoundé I12, Manchester Metropolitan University13, University of British Columbia14, Center for International Forestry Research15, Bioversity International16, University of Toronto17, University of Stirling18, Forestry Research Institute of Ghana19, University of Montpellier20, Centre de coopération internationale en recherche agronomique pour le développement21, Mbarara University of Science and Technology22, Marien Ngouabi University23, University of Buea24, Duke University25, University of Edinburgh26, Smithsonian Institution27, National Park Service28, University of Cambridge29, Gembloux Agro-Bio Tech30, University of Birmingham31, University of Exeter32, Smithsonian Tropical Research Institute33, Chinese Academy of Sciences34, Royal Botanic Garden Edinburgh35, African Wildlife Foundation36, American Museum of Natural History37, University of Bristol38, University of Hong Kong39, Royal Society for the Protection of Birds40, Royal Botanic Gardens41, Environmental Change Institute42, University of the Sunshine Coast43, Fleming College44, Sokoine University of Agriculture45, University of Southampton46, University of Lincoln47, University of Florence48, University of Aberdeen49, Innovate UK50, National University of Singapore51, Washington State University Vancouver52, Yale University53, University of Nottingham54, Université libre de Bruxelles55, Florida International University56, Bangor University57, University of Liberia58
04 Mar 2020-Nature
TL;DR: Overall, the uptake of carbon into Earth’s intact tropical forests peaked in the 1990s and independent observations indicating greater recent carbon uptake into the Northern Hemisphere landmass reinforce the conclusion that the intact tropical forest carbon sink has already peaked.
Abstract: Structurally intact tropical forests sequestered about half of the global terrestrial carbon uptake over the 1990s and early 2000s, removing about 15 per cent of anthropogenic carbon dioxide emissions. Climate-driven vegetation models typically predict that this tropical forest ‘carbon sink’ will continue for decades. Here we assess trends in the carbon sink using 244 structurally intact African tropical forests spanning 11 countries, compare them with 321 published plots from Amazonia and investigate the underlying drivers of the trends. The carbon sink in live aboveground biomass in intact African tropical forests has been stable for the three decades to 2015, at 0.66 tonnes of carbon per hectare per year (95 per cent confidence interval 0.53–0.79), in contrast to the long-term decline in Amazonian forests. Therefore the carbon sink responses of Earth’s two largest expanses of tropical forest have diverged. The difference is largely driven by carbon losses from tree mortality, with no detectable multi-decadal trend in Africa and a long-term increase in Amazonia. Both continents show increasing tree growth, consistent with the expected net effect of rising atmospheric carbon dioxide and air temperature. Despite the past stability of the African carbon sink, our most intensively monitored plots suggest a post-2010 increase in carbon losses, delayed compared to Amazonia, indicating asynchronous carbon sink saturation on the two continents. A statistical model including carbon dioxide, temperature, drought and forest dynamics accounts for the observed trends and indicates a long-term future decline in the African sink, whereas the Amazonian sink continues to weaken rapidly. Overall, the uptake of carbon into Earth’s intact tropical forests peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size, independent observations indicating greater recent carbon uptake into the Northern Hemisphere landmass reinforce our conclusion that the intact tropical forest carbon sink has already peaked. This saturation and ongoing decline of the tropical forest carbon sink has consequences for policies intended to stabilize Earth’s climate.

395 citations


Authors

Showing all 1909 results

Network Information
Related Institutions (5)
Makerere University
12.4K papers, 366.5K citations

86% related

University of Ibadan
18.8K papers, 330.6K citations

83% related

Institut de recherche pour le développement
9.6K papers, 386.3K citations

83% related

University of KwaZulu-Natal
33.4K papers, 713.4K citations

82% related

College of Health Sciences, Bahrain
22.3K papers, 400.2K citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202311
202232
2021413
2020358
2019260
2018232