scispace - formally typeset
Search or ask a question
Institution

University of Buenos Aires

EducationBuenos Aires, Argentina
About: University of Buenos Aires is a education organization based out in Buenos Aires, Argentina. It is known for research contribution in the topics: Population & Context (language use). The organization has 29353 authors who have published 50947 publications receiving 1086007 citations. The organization is also known as: Universidad de Buenos Aires.


Papers
More filters
Journal ArticleDOI
TL;DR: Rooting patterns for terrestrial biomes are analyzed and distributions for various plant functional groups are compared and the merits and possible shortcomings of the analysis are discussed in the context of root biomass and root functioning.
Abstract: Understanding and predicting ecosystem functioning (e.g., carbon and water fluxes) and the role of soils in carbon storage requires an accurate assessment of plant rooting distributions. Here, in a comprehensive literature synthesis, we analyze rooting patterns for terrestrial biomes and compare distributions for various plant functional groups. We compiled a database of 250 root studies, subdividing suitable results into 11 biomes, and fitted the depth coefficient β to the data for each biome (Gale and Grigal 1987). β is a simple numerical index of rooting distribution based on the asymptotic equation Y=1-βd, where d = depth and Y = the proportion of roots from the surface to depth d. High values of β correspond to a greater proportion of roots with depth. Tundra, boreal forest, and temperate grasslands showed the shallowest rooting profiles (β=0.913, 0.943, and 0.943, respectively), with 80-90% of roots in the top 30 cm of soil; deserts and temperate coniferous forests showed the deepest profiles (β=0.975 and 0.976, respectively) and had only 50% of their roots in the upper 30 cm. Standing root biomass varied by over an order of magnitude across biomes, from approximately 0.2 to 5 kg m-2. Tropical evergreen forests had the highest root biomass (5 kg m-2), but other forest biomes and sclerophyllous shrublands were of similar magnitude. Root biomass for croplands, deserts, tundra and grasslands was below 1.5 kg m-2. Root/shoot (R/S) ratios were highest for tundra, grasslands, and cold deserts (ranging from 4 to 7); forest ecosystems and croplands had the lowest R/S ratios (approximately 0.1 to 0.5). Comparing data across biomes for plant functional groups, grasses had 44% of their roots in the top 10 cm of soil. (β=0.952), while shrubs had only 21% in the same depth increment (β=0.978). The rooting distribution of all temperate and tropical trees was β=0.970 with 26% of roots in the top 10 cm and 60% in the top 30 cm. Overall, the globally averaged root distribution for all ecosystems was β=0.966 (r 2=0.89) with approximately 30%, 50%, and 75% of roots in the top 10 cm, 20 cm, and 40 cm, respectively. We discuss the merits and possible shortcomings of our analysis in the context of root biomass and root functioning.

2,554 citations

Journal ArticleDOI
06 Aug 2008-JAMA
TL;DR: This report provides guidelines for when to initiate antiretroviral therapy, selection of appropriate initial regimens, patient monitoring, when to change therapy, and what regimens to use when changing.
Abstract: Context New trial data and drug regimens that have become available in the last 2 years warrant an update to guidelines for antiretroviral therapy (ART) in human immunodeficiency virus (HIV)–infected adults in resource-rich settings. Objective To provide current recommendations for the treatment of adult HIV infection with ART and use of laboratory-monitoring tools. Guidelines include when to start therapy and with what drugs, monitoring for response and toxic effects, special considerations in therapy, and managing antiretroviral failure. Data Sources, Study Selection, and Data Extraction Data that had been published or presented in abstract form at scientific conferences in the past 2 years were systematically searched and reviewed by an International Antiviral Society–USA panel. The panel reviewed available evidence and formed recommendations by full panel consensus. Data Synthesis Treatment is recommended for all adults with HIV infection; the strength of the recommendation and the quality of the evidence increase with decreasing CD4 cell count and the presence of certain concurrent conditions. Recommended initial regimens include 2 nucleoside reverse transcriptase inhibitors (tenofovir/emtricitabine or abacavir/lamivudine) plus a nonnucleoside reverse transcriptase inhibitor (efavirenz), a ritonavir-boosted protease inhibitor (atazanavir or darunavir), or an integrase strand transfer inhibitor (raltegravir). Alternatives in each class are recommended for patients with or at risk of certain concurrent conditions. CD4 cell count and HIV-1 RNA level should be monitored, as should engagement in care, ART adherence, HIV drug resistance, and quality-of-care indicators. Reasons for regimen switching include virologic, immunologic, or clinical failure and drug toxicity or intolerance. Confirmed treatment failure should be addressed promptly and multiple factors considered. Conclusion New recommendations for HIV patient care include offering ART to all patients regardless of CD4 cell count, changes in therapeutic options, and modifications in the timing and choice of ART in the setting of opportunistic illnesses such as cryptococcal disease and tuberculosis.

2,357 citations

Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Lorenzo Galluzzi3, Stuart A. Aaronson4, John M. Abrams5, Emad S. Alnemri6, David W. Andrews7, Eric H. Baehrecke8, Nicolas G. Bazan9, Mikhail V. Blagosklonny10, Klas Blomgren11, Klas Blomgren12, Christoph Borner13, Dale E. Bredesen14, Dale E. Bredesen15, Catherine Brenner16, Maria Castedo2, Maria Castedo3, Maria Castedo1, John A. Cidlowski17, Aaron Ciechanover18, Gerald M. Cohen19, V De Laurenzi20, R De Maria21, Mohanish Deshmukh22, Brian David Dynlacht23, Wafik S. El-Deiry24, Richard A. Flavell25, Richard A. Flavell26, Simone Fulda27, Carmen Garrido1, Carmen Garrido28, Pierre Golstein1, Pierre Golstein29, Pierre Golstein16, Marie-Lise Gougeon30, Douglas R. Green, Hinrich Gronemeyer31, Hinrich Gronemeyer1, Hinrich Gronemeyer16, György Hajnóczky6, J. M. Hardwick32, Michael O. Hengartner33, Hidenori Ichijo34, Marja Jäättelä, Oliver Kepp2, Oliver Kepp1, Oliver Kepp3, Adi Kimchi35, Daniel J. Klionsky36, Richard A. Knight37, Sally Kornbluth38, Sharad Kumar, Beth Levine5, Beth Levine25, Stuart A. Lipton, Enrico Lugli17, Frank Madeo39, Walter Malorni21, Jean-Christophe Marine40, Seamus J. Martin41, Jan Paul Medema42, Patrick Mehlen16, Patrick Mehlen43, Gerry Melino19, Gerry Melino44, Ute M. Moll45, Ute M. Moll46, Eugenia Morselli2, Eugenia Morselli3, Eugenia Morselli1, Shigekazu Nagata47, Donald W. Nicholson48, Pierluigi Nicotera19, Gabriel Núñez36, Moshe Oren35, Josef M. Penninger49, Shazib Pervaiz50, Marcus E. Peter51, Mauro Piacentini44, Jochen H. M. Prehn52, Hamsa Puthalakath53, Gabriel A. Rabinovich54, Rosario Rizzuto55, Cecília M. P. Rodrigues56, David C. Rubinsztein57, Thomas Rudel58, Luca Scorrano59, Hans-Uwe Simon60, Hermann Steller61, Hermann Steller25, J. Tschopp62, Yoshihide Tsujimoto63, Peter Vandenabeele64, Ilio Vitale1, Ilio Vitale3, Ilio Vitale2, Karen H. Vousden65, Richard J. Youle17, Junying Yuan66, Boris Zhivotovsky67, Guido Kroemer2, Guido Kroemer1, Guido Kroemer3 
French Institute of Health and Medical Research1, Institut Gustave Roussy2, University of Paris-Sud3, Icahn School of Medicine at Mount Sinai4, University of Texas Southwestern Medical Center5, Thomas Jefferson University6, McMaster University7, University of Massachusetts Medical School8, LSU Health Sciences Center New Orleans9, Roswell Park Cancer Institute10, University of Gothenburg11, Boston Children's Hospital12, University of Freiburg13, Buck Institute for Research on Aging14, University of California, San Francisco15, Centre national de la recherche scientifique16, National Institutes of Health17, Technion – Israel Institute of Technology18, University of Leicester19, University of Chieti-Pescara20, Istituto Superiore di Sanità21, University of North Carolina at Chapel Hill22, New York University23, University of Pennsylvania24, Howard Hughes Medical Institute25, Yale University26, University of Ulm27, University of Burgundy28, Aix-Marseille University29, Pasteur Institute30, University of Strasbourg31, Johns Hopkins University32, University of Zurich33, University of Tokyo34, Weizmann Institute of Science35, University of Michigan36, University College London37, Duke University38, University of Graz39, Ghent University40, Trinity College, Dublin41, University of Amsterdam42, University of Lyon43, University of Rome Tor Vergata44, Stony Brook University45, University of Göttingen46, Kyoto University47, Merck & Co.48, Austrian Academy of Sciences49, National University of Singapore50, University of Chicago51, Royal College of Surgeons in Ireland52, La Trobe University53, University of Buenos Aires54, University of Padua55, University of Lisbon56, University of Cambridge57, University of Würzburg58, University of Geneva59, University of Bern60, Rockefeller University61, University of Lausanne62, Osaka University63, University of California, San Diego64, University of Glasgow65, Harvard University66, Karolinska Institutet67
TL;DR: A nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls is provided and the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells is emphasized.
Abstract: Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios Thus far, dozens of methods have been proposed to quantify cell death-related parameters However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls These guidelines are intended for investigators who study cell death, as well as for reviewers who need to constructively critique scientific reports that deal with cellular demise Given the difficulties in determining the exact number of cells that have passed the point-of-no-return of the signaling cascades leading to cell death, we emphasize the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells

2,218 citations

Journal ArticleDOI
24 May 2001-Nature
TL;DR: An integrated model of leptin action and neuronal architecture in the arcuate nucleus of the hypothalamus is proposed and it is shown that melanocortin peptides have an autoinhibitory effect on this circuit.
Abstract: The administration of leptin to leptin-deficient humans, and the analogous Lepob/Lepob mice, effectively reduces hyperphagia and obesity. But common obesity is associated with elevated leptin, which suggests that obese humans are resistant to this adipocyte hormone. In addition to regulating long-term energy balance, leptin also rapidly affects neuronal activity. Proopiomelanocortin (POMC) and neuropeptide-Y types of neurons in the arcuate nucleus of the hypothalamus are both principal sites of leptin receptor expression and the source of potent neuropeptide modulators, melanocortins and neuropeptide Y, which exert opposing effects on feeding and metabolism. These neurons are therefore ideal for characterizing leptin action and the mechanism of leptin resistance; however, their diffuse distribution makes them difficult to study. Here we report electrophysiological recordings on POMC neurons, which we identified by targeted expression of green fluorescent protein in transgenic mice. Leptin increases the frequency of action potentials in the anorexigenic POMC neurons by two mechanisms: depolarization through a nonspecific cation channel; and reduced inhibition by local orexigenic neuropeptide-Y/GABA (gamma-aminobutyric acid) neurons. Furthermore, we show that melanocortin peptides have an autoinhibitory effect on this circuit. On the basis of our results, we propose an integrated model of leptin action and neuronal architecture in the arcuate nucleus of the hypothalamus.

2,193 citations

Journal ArticleDOI
TL;DR: HPV types 16, 18, 31, 33, 35, 45, 52, and 58 should be given priority when the cross-protective effects of current vaccines are assessed, and for formulation of recommendations for the use of second-generation polyvalent HPV vaccines, according to this largest assessment of HPV genotypes to date.
Abstract: Summary Background Knowledge about the distribution of human papillomavirus (HPV) genotypes in invasive cervical cancer is crucial to guide the introduction of prophylactic vaccines. We aimed to provide novel and comprehensive data about the worldwide genotype distribution in patients with invasive cervical cancer. Methods Paraffin-embedded samples of histologically confirmed cases of invasive cervical cancer were collected from 38 countries in Europe, North America, central South America, Africa, Asia, and Oceania. Inclusion criteria were a pathological confirmation of a primary invasive cervical cancer of epithelial origin in the tissue sample selected for analysis of HPV DNA, and information about the year of diagnosis. HPV detection was done by use of PCR with SPF-10 broad-spectrum primers followed by DNA enzyme immunoassay and genotyping with a reverse hybridisation line probe assay. Sequence analysis was done to characterise HPV-positive samples with unknown HPV types. Data analyses included algorithms of multiple infections to estimate type-specific relative contributions. Findings 22 661 paraffin-embedded samples were obtained from 14 249 women. 10 575 cases of invasive cervical cancer were included in the study, and 8977 (85%) of these were positive for HPV DNA. The most common HPV types were 16, 18, 31, 33, 35, 45, 52, and 58 with a combined worldwide relative contribution of 8196 of 8977 (91%, 95% CI 90–92). HPV types 16 and 18 were detected in 6357 of 8977 of cases (71%, 70–72) of invasive cervical cancer. HPV types 16, 18, and 45 were detected in 443 of 470 cases (94%, 92–96) of cervical adenocarcinomas. Unknown HPV types that were identified with sequence analysis were 26, 30, 61, 67, 69, 82, and 91 in 103 (1%) of 8977 cases of invasive cervical cancer. Women with invasive cervical cancers related to HPV types 16, 18, or 45 presented at a younger mean age than did those with other HPV types (50·0 years [49·6–50·4], 48·2 years [47·3–49·2], 46·8 years [46·6–48·1], and 55·5 years [54·9–56·1], respectively). Interpretation To our knowledge, this study is the largest assessment of HPV genotypes to date. HPV types 16, 18, 31, 33, 35, 45, 52, and 58 should be given priority when the cross-protective effects of current vaccines are assessed, and for formulation of recommendations for the use of second-generation polyvalent HPV vaccines. Our results also suggest that type-specific high-risk HPV-DNA-based screening tests and protocols should focus on HPV types 16, 18, and 45. Funding Spanish grants from Instituto de Salud Carlos III, Agencia de Gestio d'Ajuts Universitaris i de Recerca, Marato de TV3 Foundation, and unrestricted grants from GlaxoSmithKline Biologicals, Sanofi Pasteur MSD, and Merck.

2,145 citations


Authors

Showing all 29643 results

NameH-indexPapersCitations
Alexander Belyaev1421895100796
Mitchell Wayne1391810108776
Floyd E. Bloom13961672641
Cecilia Elena Gerber1381727106984
Philip Baringer1381927105322
Randy Ruchti1371832107846
Diego F. Torres13794872180
Harrison Prosper1341587100607
Wladyslaw Dabrowski12999079728
Ariel Schwartzman129106882555
Danuta Kisielewska12895078603
A. Baden128135284403
Stefan Koperny12886775257
Tadeusz Kowalski12881674939
Iwona Grabowska-Bold12893176796
Network Information
Related Institutions (5)
University of Barcelona
108.5K papers, 3.7M citations

89% related

Spanish National Research Council
220.4K papers, 7.6M citations

87% related

University of São Paulo
272.3K papers, 5.1M citations

87% related

University of Florence
79.5K papers, 2.3M citations

87% related

Hebrew University of Jerusalem
100K papers, 3.9M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20251
202391
2022426
20212,755
20203,006
20192,656