Institution
University of Cagliari
Education•Cagliari, Italy•
About: University of Cagliari is a(n) education organization based out in Cagliari, Italy. It is known for research contribution in the topic(s): Population & Dopamine. The organization has 11029 authors who have published 29046 publication(s) receiving 771023 citation(s). The organization is also known as: Università degli Studi di Cagliari & Universita degli Studi di Cagliari.
Topics: Population, Dopamine, Dopaminergic, Nucleus accumbens, Agonist
Papers published on a yearly basis
Papers
More filters
TL;DR: This survey is directed to those who want to approach this complex discipline and contribute to its development, and finds that still major issues shall be faced by the research community.
Abstract: This paper addresses the Internet of Things. Main enabling factor of this promising paradigm is the integration of several technologies and communications solutions. Identification and tracking technologies, wired and wireless sensor and actuator networks, enhanced communication protocols (shared with the Next Generation Internet), and distributed intelligence for smart objects are just the most relevant. As one can easily imagine, any serious contribution to the advance of the Internet of Things must necessarily be the result of synergetic activities conducted in different fields of knowledge, such as telecommunications, informatics, electronics and social science. In such a complex scenario, this survey is directed to those who want to approach this complex discipline and contribute to its development. Different visions of this Internet of Things paradigm are reported and enabling technologies reviewed. What emerges is that still major issues shall be faced by the research community. The most relevant among them are addressed in details.
11,254 citations
TL;DR: The effect of various drugs on the extracellular concentration of dopamine in two terminal dopaminergic areas, the nucleus accumbens septi (a limbic area) and the dorsal caudate nucleus (a subcortical motor area), was studied in freely moving rats by using brain dialysis as mentioned in this paper.
Abstract: The effect of various drugs on the extracellular concentration of dopamine in two terminal dopaminergic areas, the nucleus accumbens septi (a limbic area) and the dorsal caudate nucleus (a subcortical motor area), was studied in freely moving rats by using brain dialysis. Drugs abused by humans (e.g., opiates, ethanol, nicotine, amphetamine, and cocaine) increased extracellular dopamine concentrations in both areas, but especially in the accumbens, and elicited hypermotility at low doses. On the other hand, drugs with aversive properties (e.g., agonists of kappa opioid receptors, U-50,488, tifluadom, and bremazocine) reduced dopamine release in the accumbens and in the caudate and elicited hypomotility. Haloperidol, a neuroleptic drug, increased extracellular dopamine concentrations, but this effect was not preferential for the accumbens and was associated with hypomotility and sedation. Drugs not abused by humans [e.g., imipramine (an antidepressant), atropine (an antimuscarinic drug), and diphenhydramine (an antihistamine)] failed to modify synaptic dopamine concentrations. These results provide biochemical evidence for the hypothesis that stimulation of dopamine transmission in the limbic system might be a fundamental property of drugs that are abused.
4,392 citations
National Institutes of Health1, Cardiff University2, VU University Amsterdam3, Erasmus University Rotterdam4, University of Manchester5, University College London6, University of Helsinki7, University of Oulu8, Johns Hopkins University9, Georgetown University10, Illumina11, University Hospital of Wales12, University of Eastern Finland13, University of Miami14, University of Turin15, University of Cagliari16, The Catholic University of America17, Microsoft18, University of Toronto19, University of Würzburg20, University of Washington21, Aneurin Bevan University Health Board22
TL;DR: The chromosome 9p21 amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) locus contains one of the last major unidentified autosomal-dominant genes underlying these common neurodegenerative diseases, and a large hexanucleotide repeat expansion in the first intron of C9ORF72 is shown.
Abstract: The chromosome 9p21 amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) locus contains one of the last major unidentified autosomal-dominant genes underlying these common neurodegenerative diseases. We have previously shown that a founder haplotype, covering the MOBKL2b, IFNK, and C9ORF72 genes, is present in the majority of cases linked to this region. Here we show that there is a large hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72 on the affected haplotype. This repeat expansion segregates perfectly with disease in the Finnish population, underlying 46.0% of familial ALS and 21.1% of sporadic ALS in that population. Taken together with the D90A SOD1 mutation, 87% of familial ALS in Finland is now explained by a simple monogenic cause. The repeat expansion is also present in one-third of familial ALS cases of outbred European descent, making it the most common genetic cause of these fatal neurodegenerative diseases identified to date.
3,304 citations
Jean-Charles Lambert1, Jean-Charles Lambert2, Jean-Charles Lambert3, Carla A. Ibrahim-Verbaas4 +212 more•Institutions (75)
TL;DR: In addition to the APOE locus (encoding apolipoprotein E), 19 loci reached genome-wide significance (P < 5 × 10−8) in the combined stage 1 and stage 2 analysis, of which 11 are newly associated with Alzheimer's disease.
Abstract: Eleven susceptibility loci for late-onset Alzheimer's disease (LOAD) were identified by previous studies; however, a large portion of the genetic risk for this disease remains unexplained. We conducted a large, two-stage meta-analysis of genome-wide association studies (GWAS) in individuals of European ancestry. In stage 1, we used genotyped and imputed data (7,055,881 SNPs) to perform meta-analysis on 4 previously published GWAS data sets consisting of 17,008 Alzheimer's disease cases and 37,154 controls. In stage 2, 11,632 SNPs were genotyped and tested for association in an independent set of 8,572 Alzheimer's disease cases and 11,312 controls. In addition to the APOE locus (encoding apolipoprotein E), 19 loci reached genome-wide significance (P < 5 × 10−8) in the combined stage 1 and stage 2 analysis, of which 11 are newly associated with Alzheimer's disease.
3,096 citations
Edinburgh Royal Infirmary1, University of St. Gallen2, Charité3, Sahlgrenska University Hospital4, University of Texas MD Anderson Cancer Center5, University of Alberta6, Mayo Clinic7, McGill University8, University of Cagliari9, Cleveland Clinic10, Sapienza University of Rome11, Nottingham University Hospitals NHS Trust12
TL;DR: A framework exists on a framework for the definition and classification of cancer cachexia, a multifactorial syndrome defined by an ongoing loss of skeletal muscle mass that cannot be fully reversed by conventional nutritional support and leads to progressive functional impairment.
Abstract: Summary To develop a framework for the definition and classification of cancer cachexia a panel of experts participated in a formal consensus process, including focus groups and two Delphi rounds. Cancer cachexia was defined as a multifactorial syndrome defined by an ongoing loss of skeletal muscle mass (with or without loss of fat mass) that cannot be fully reversed by conventional nutritional support and leads to progressive functional impairment. Its pathophysiology is characterised by a negative protein and energy balance driven by a variable combination of reduced food intake and abnormal metabolism. The agreed diagnostic criterion for cachexia was weight loss greater than 5%, or weight loss greater than 2% in individuals already showing depletion according to current bodyweight and height (body-mass index [BMI] 2 ) or skeletal muscle mass (sarcopenia). An agreement was made that the cachexia syndrome can develop progressively through various stages—precachexia to cachexia to refractory cachexia. Severity can be classified according to degree of depletion of energy stores and body protein (BMI) in combination with degree of ongoing weight loss. Assessment for classification and clinical management should include the following domains: anorexia or reduced food intake, catabolic drive, muscle mass and strength, functional and psychosocial impairment. Consensus exists on a framework for the definition and classification of cancer cachexia. After validation, this should aid clinical trial design, development of practice guidelines, and, eventually, routine clinical management.
2,663 citations
Authors
Showing all 11029 results
Name | H-index | Papers | Citations |
---|---|---|---|
Herbert W. Marsh | 152 | 646 | 89512 |
Michele Parrinello | 133 | 637 | 94674 |
Dafna D. Gladman | 129 | 1036 | 75273 |
Peter J. Anderson | 120 | 966 | 63635 |
Alessandro Vespignani | 118 | 419 | 63824 |
C. Patrignani | 117 | 1754 | 110008 |
Hermine Katharina Wöhri | 116 | 629 | 55540 |
Francesco Muntoni | 115 | 963 | 52629 |
Giancarlo Comi | 109 | 961 | 54270 |
Giorgio Parisi | 108 | 941 | 60746 |
Luca Benini | 101 | 1453 | 47862 |
Alessandro Cardini | 101 | 1288 | 53804 |
Nicola Serra | 100 | 1042 | 46640 |
Jurg Keller | 99 | 389 | 35628 |
Giulio Usai | 97 | 517 | 39392 |