scispace - formally typeset
Search or ask a question
Institution

University of Cagliari

EducationCagliari, Italy
About: University of Cagliari is a education organization based out in Cagliari, Italy. It is known for research contribution in the topics: Population & Dopamine. The organization has 11029 authors who have published 29046 publications receiving 771023 citations. The organization is also known as: Università degli Studi di Cagliari & Universita degli Studi di Cagliari.


Papers
More filters
Journal ArticleDOI
K. Aamodt1, N. Abel2, A. Abrahantes Quintana, A. Acero  +989 moreInstitutions (76)
TL;DR: In this paper, the production of mesons containing strange quarks (KS, φ) and both singly and doubly strange baryons (,, and − + +) are measured at mid-rapidity in pp collisions at √ s = 0.9 TeV with the ALICE experiment at the LHC.

1,176 citations

Journal ArticleDOI
05 Jul 2013-Science
TL;DR: The detection of four nonrepeating radio transient events with millisecond duration in data from the 64-meter Parkes radio telescope in Australia indicates that these radio bursts had their origin outside the authors' galaxy, but it is not possible to tell what caused them.
Abstract: Searches for transient astrophysical sources often reveal unexpected classes of objects that are useful physical laboratories. In a recent survey for pulsars and fast transients, we have uncovered four millisecond-duration radio transients all more than 40° from the Galactic plane. The bursts' properties indicate that they are of celestial rather than terrestrial origin. Host galaxy and intergalactic medium models suggest that they have cosmological redshifts of 0.5 to 1 and distances of up to 3 gigaparsecs. No temporally coincident x- or gamma-ray signature was identified in association with the bursts. Characterization of the source population and identification of host galaxies offers an opportunity to determine the baryonic content of the universe.

1,093 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an updated and comprehensive description of the development of the Electric Current Activated/assisted Sintering technique (ECAS) for the obtainment of dense materials including nanostructured ones.
Abstract: This review article aims to provide an updated and comprehensive description of the development of the Electric Current Activated/assisted Sintering technique (ECAS) for the obtainment of dense materials including nanostructured ones. The use of ECAS for pure sintering purposes, when starting from already synthesized powders promoters, and to obtain the desired material by simultaneously performing synthesis and consolidation in one-step is reviewed. Specifically, more than a thousand papers published on this subject during the past decades are taken into account. The experimental procedures, formation mechanisms, characteristics, and functionality of a wide spectrum of dense materials fabricated by ECAS are presented. The influence of the most important operating parameters (i.e. current intensity, temperature, processing time, etc.) on product characteristics and process dynamics is reviewed for a large family of materials including ceramics, intermetallics, metal–ceramic and ceramic–ceramic composites. In this review, systems where synthesis and densification stages occur simultaneously, i.e. a fully dense product is formed immediately after reaction completion, as well as those ones for which a satisfactory densification degree is reached only by maintaining the application of the electric current once the full reaction conversion is obtained, are identified. In addition, emphasis is given to the obtainment of nanostructured dense materials due to their rapid progress and wide applications. Specifically, the effect of mechanical activation by ball milling of starting powders on ECAS process dynamics and product characteristics (i.e. density and microstructure) is analysed. The emerging theme from the large majority of the reviewed investigations is the comparison of ECAS over conventional methods including pressureless sintering, hot pressing, and others. Theoretical analysis pertaining to such technique is also proposed following the last results obtained on this topic.

1,087 citations

Journal ArticleDOI
27 Jun 1997-Science
TL;DR: Delta9-THC and heroin exert similar effects on mesolimbic dopamine transmission through a common mu1 opioid receptor mechanism located in the ventral mesencephalic tegmentum.
Abstract: The effects of the active ingredient of Cannabis, Delta9-tetrahydrocannabinol (Delta9-THC), and of the highly addictive drug heroin on in vivo dopamine transmission in the nucleus accumbens were compared in Sprague-Dawley rats by brain microdialysis Delta9-THC and heroin increased extracellular dopamine concentrations selectively in the shell of the nucleus accumbens; these effects were mimicked by the synthetic cannabinoid agonist WIN55212-2 SR141716A, an antagonist of central cannabinoid receptors, prevented the effects of Delta9-THC but not those of heroin Naloxone, a generic opioid antagonist, administered systemically, or naloxonazine, an antagonist of micro1 opioid receptors, infused into the ventral tegmentum, prevented the action of cannabinoids and heroin on dopamine transmission Thus, Delta9-THC and heroin exert similar effects on mesolimbic dopamine transmission through a common mu1 opioid receptor mechanism located in the ventral mesencephalic tegmentum

1,071 citations

Journal ArticleDOI
TL;DR: This paper identifies appropriate policies for the establishment and the management of social relationships between objects in such a way that the resulting social network is navigable and describes a possible architecture for the IoT that includes the functionalities required to integrate things into a social network.

1,065 citations


Authors

Showing all 11160 results

NameH-indexPapersCitations
Herbert W. Marsh15264689512
Michele Parrinello13363794674
Dafna D. Gladman129103675273
Peter J. Anderson12096663635
Alessandro Vespignani11841963824
C. Patrignani1171754110008
Hermine Katharina Wöhri11662955540
Francesco Muntoni11596352629
Giancarlo Comi10996154270
Giorgio Parisi10894160746
Luca Benini101145347862
Alessandro Cardini101128853804
Nicola Serra100104246640
Jurg Keller9938935628
Giulio Usai9751739392
Network Information
Related Institutions (5)
University of Florence
79.5K papers, 2.3M citations

97% related

Sapienza University of Rome
155.4K papers, 4.3M citations

97% related

University of Bologna
115.1K papers, 3.4M citations

96% related

University of Padua
114.8K papers, 3.6M citations

96% related

University of Milan
139.7K papers, 4.6M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202374
2022230
20211,898
20201,903
20191,636
20181,600