scispace - formally typeset
Search or ask a question
Institution

University of Cagliari

EducationCagliari, Italy
About: University of Cagliari is a education organization based out in Cagliari, Italy. It is known for research contribution in the topics: Population & Dopamine. The organization has 11029 authors who have published 29046 publications receiving 771023 citations. The organization is also known as: Università degli Studi di Cagliari & Universita degli Studi di Cagliari.


Papers
More filters
Journal ArticleDOI
TL;DR: The antimicrobial and antifungal tests showed a weak activity of Sardinian rosemary, and an inductive effect on fungal growth, especially toward Fusarium graminearum was observed.
Abstract: The chemical composition of the essential oil of the Sardinian Rosmarinus officinalis L. obtained by hydro distillation and steam\hydro distillation was studied using GC-FID and MS. Samples were collected at different latitude and longitude of Sardinia (Italy). The yields ranged between 1.75 and 0.48% (v/w, volume/dry-weight). A total of 30 components were identified. The major compounds in the essential oil were alpha-pinene, borneol, (-) camphene, camphor, verbenone, and bornyl-acetate. Multivariate analysis carried out on chemical molecular markers, with the appraisal of chemical, pedological, and random amplified polymorphic DNA data, allows four different clusters to be distinguished. The antimicrobial and antifungal tests showed a weak activity of Sardinian rosemary. On the other hand, an inductive effect on fungal growth, especially toward Fusarium graminearum was observed.

298 citations

Journal ArticleDOI
TL;DR: The authors study the meter placement problem for the measurement infrastructure of an active distribution network, where heterogeneous measurements provided by Phasor Measurement Units (PMUs) and other advanced measurement systems are used in addition to measurements typical of distribution networks.
Abstract: Monitoring systems are expected to play a major role in active distribution grids, and the design of the measurement infrastructure is a critical element for an effective operation. The use of any available and newly installed, though heterogeneous, metering device providing more accurate and real-time measurement data offers a new paradigm for the distribution grid monitoring system. In this paper the authors study the meter placement problem for the measurement infrastructure of an active distribution network, where heterogeneous measurements provided by Phasor Measurement Units (PMUs) and other advanced measurement systems such as Smart Metering systems are used in addition to measurements that are typical of distribution networks, in particular substation measurements and a-priori knowledge. This work aims at defining a design approach for finding the optimal measurement infrastructure for an active distribution grid. The design problem is posed in terms of a stochastic optimization with the goal of bounding the overall uncertainty of the state estimation using heterogeneous measurements while minimizing the investment cost. The proposed method is also designed for computational efficiency so to cover a wide set of scenarios.

298 citations

Journal ArticleDOI
TL;DR: In this paper, the authors exploit the concept of strain-induced band-structure engineering in graphene through the calculation of its electronic properties under uniaxial, shear, and combined uniaxonial-shear deformations.
Abstract: We exploit the concept of strain-induced band-structure engineering in graphene through the calculation of its electronic properties under uniaxial, shear, and combined uniaxial-shear deformations. We show that by combining shear deformations to uniaxial strains it is possible modulate the graphene energy-gap value from zero up to 0.9 eV. Interestingly enough, the use of a shear component allows for a gap opening at moderate absolute deformation, safely smaller than the graphene failure strain.

297 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the surface energy will diverge with slab thickness if the bulk energy per atom is in error, in the context of calculations which used different methods to study the bulk and slab systems.
Abstract: The formation energy of a solid surface can be extracted from slab calculations if the bulk energy per atom is known. It has been pointed out previously that the resulting surface energy will diverge with slab thickness if the bulk energy is in error, in the context of calculations which used different methods to study the bulk and slab systems. We show here that this result is equally relevant for state-of-the-art computational methods which carefully treat bulk and slab systems in the same way. Here we compare different approaches, and present a solution to the problem that eliminates the divergence and leads to rapidly convergent and accurate surface energies.

297 citations

Journal ArticleDOI
TL;DR: McPAD (multiple classifier payload-based anomaly detector), a new accurate payload- based anomaly detection system that consists of an ensemble of one-class classifiers that is very accurate in detecting network attacks that bear some form of shell-code in the malicious payload.

296 citations


Authors

Showing all 11160 results

NameH-indexPapersCitations
Herbert W. Marsh15264689512
Michele Parrinello13363794674
Dafna D. Gladman129103675273
Peter J. Anderson12096663635
Alessandro Vespignani11841963824
C. Patrignani1171754110008
Hermine Katharina Wöhri11662955540
Francesco Muntoni11596352629
Giancarlo Comi10996154270
Giorgio Parisi10894160746
Luca Benini101145347862
Alessandro Cardini101128853804
Nicola Serra100104246640
Jurg Keller9938935628
Giulio Usai9751739392
Network Information
Related Institutions (5)
University of Florence
79.5K papers, 2.3M citations

97% related

Sapienza University of Rome
155.4K papers, 4.3M citations

97% related

University of Bologna
115.1K papers, 3.4M citations

96% related

University of Padua
114.8K papers, 3.6M citations

96% related

University of Milan
139.7K papers, 4.6M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202374
2022230
20211,898
20201,903
20191,636
20181,600