scispace - formally typeset
Search or ask a question
Institution

University of California

EducationOakland, California, United States
About: University of California is a education organization based out in Oakland, California, United States. It is known for research contribution in the topics: Population & Layer (electronics). The organization has 55175 authors who have published 52933 publications receiving 1491169 citations. The organization is also known as: UC & University of California System.


Papers
More filters
Journal ArticleDOI
TL;DR: A meta-analysis of the neuropsychological effects of MA abuse/dependence revealed broadly medium effect sizes, showing deficits in episodic memory, executive functions, information processing speed, motor skills, language, and visuoconstructional abilities.
Abstract: This review provides a critical analysis of the central nervous system effects of acute and chronic methamphetamine (MA) use, which is linked to numerous adverse psychosocial, neuropsychiatric, and medical problems. A meta-analysis of the neuropsychological effects of MA abuse/dependence revealed broadly medium effect sizes, showing deficits in episodic memory, executive functions, information processing speed, motor skills, language, and visuoconstructional abilities. The neuropsychological deficits associated with MA abuse/dependence are interpreted with regard to their possible neural mechanisms, most notably MA-associated frontostriatal neurotoxicity. In addition, potential explanatory factors are considered, including demographics (e.g., gender), MA use characteristics (e.g., duration of abstinence), and the influence of common psychiatric (e.g., other substance-related disorders) and neuromedical (e.g., HIV infection) comorbidities. Finally, these findings are discussed with respect to their potential contribution to the clinical management of persons with MA abuse/dependence.

605 citations

Book ChapterDOI
20 May 1998
TL;DR: In this paper, the authors present a view-dependent texture mapping (VDTM) technique for generating novel views of a scene with approximately known geometry making maximal use of a sparse set of original views.
Abstract: This paper presents how the image-based rendering technique of view-dependent texture-mapping (VDTM) can be efficiently implemented using projective texture mapping, a feature commonly available in polygon graphics hardware. VDTM is a technique for generating novel views of a scene with approximately known geometry making maximal use of a sparse set of original views. The original presentation of VDTM in by Debevec, Taylor, and Malik required significant per-pixel computation and did not scale well with the number of original images. In our technique, we precompute for each polygon the set of original images in which it is visible and create a "view map" data structure that encodes the best texture map to use for a regularly sampled set of possible viewing directions. To generate a novel view, the view map for each polygon is queried to determine a set of no more than three original images to blended together in order to render the polygon with projective texture-mapping. Invisible triangles are shaded using an object-space hole-filling method. We show how the rendering process can be streamlined for implementation on standard polygon graphics hardware. We present results of using the method to render a large-scale model of the Berkeley bell tower and its surrounding campus enironment.

604 citations

Journal ArticleDOI
TL;DR: In this paper, the optical and electronic properties of the In1−xGaxN alloys have been investigated and shown to exhibit a much higher resistance to high energy (2 MeV) proton irradiation than the standard currently used photovoltaic materials such as GaAs and GaInP, and therefore offer great potential for radiation-hard high-efficiency solar cells for space applications.
Abstract: High-efficiency multijunction or tandem solar cells based on group III–V semiconductor alloys are applied in a rapidly expanding range of space and terrestrial programs. Resistance to high-energy radiation damage is an essential feature of such cells as they power most satellites, including those used for communications, defense, and scientific research. Recently we have shown that the energy gap of In1−xGaxN alloys potentially can be continuously varied from 0.7 to 3.4 eV, providing a full-solar-spectrum material system for multijunction solar cells. We find that the optical and electronic properties of these alloys exhibit a much higher resistance to high-energy (2 MeV) proton irradiation than the standard currently used photovoltaic materials such as GaAs and GaInP, and therefore offer great potential for radiation-hard high-efficiency solar cells for space applications. The observed insensitivity of the semiconductor characteristics to the radiation damage is explained by the location of the band edge...

598 citations

Journal ArticleDOI
01 Dec 1994-Langmuir
TL;DR: The morphology of ionic surfactant molecules adsorbed from aqueous solution onto hydrophobic substrates has been determined by atomic force microscopy as mentioned in this paper, which represents the first direct imaging of "hemimicelles", liquid-crystalline aggregates of amphiphilic molecules which form at interfaces.
Abstract: The morphology of ionic surfactant molecules adsorbed from aqueous solution onto hydrophobic substrates has been determined by atomic force microscopy. Near the critical micelle concentration (cmc), noncontact imaging using double-layer repulsion between the tip and sample shows parallel, epitaxially oriented stripes spaced apart by about twice the surfactant length. This represents the first direct imaging of «hemimicelles», liquid-crystalline aggregates of amphiphilic molecules (analogous to bulk micelles) which form at interfaces. The striped pattern is indicative of hemicylindrical hemimicelles, which is further corroborated by images of the monolayer adsorbate (in contact mode) below the cmc

594 citations

Journal ArticleDOI
TL;DR: The purpose of this review is to summarize the recent developments in lung cancer biology and its therapeutic strategies, and discuss the latest treatment advances including therapies currently under clinical investigation.

593 citations


Authors

Showing all 55232 results

NameH-indexPapersCitations
Meir J. Stampfer2771414283776
George M. Whitesides2401739269833
Michael Karin236704226485
Fred H. Gage216967185732
Rob Knight2011061253207
Martin White1962038232387
Simon D. M. White189795231645
Scott M. Grundy187841231821
Peidong Yang183562144351
Patrick O. Brown183755200985
Michael G. Rosenfeld178504107707
George M. Church172900120514
David Haussler172488224960
Yang Yang1712644153049
Alan J. Heeger171913147492
Network Information
Related Institutions (5)
Cornell University
235.5K papers, 12.2M citations

95% related

University of California, Berkeley
265.6K papers, 16.8M citations

94% related

University of Minnesota
257.9K papers, 11.9M citations

94% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

94% related

Stanford University
320.3K papers, 21.8M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202322
2022105
2021775
20201,069
20191,225
20181,684