scispace - formally typeset
Search or ask a question
Institution

University of California

EducationOakland, California, United States
About: University of California is a education organization based out in Oakland, California, United States. It is known for research contribution in the topics: Population & Layer (electronics). The organization has 55175 authors who have published 52933 publications receiving 1491169 citations. The organization is also known as: UC & University of California System.


Papers
More filters
Journal ArticleDOI
TL;DR: A model to describe the neural dynamics responsible for odor recognition and discrimination is developed and it is hypothesized that chaotic behavior serves as the essential ground state for the neural perceptual apparatus and a mechanism for acquiring new forms of patterned activity corresponding to new learned odors is proposed.
Abstract: Recent “connectionist” models provide a new explanatory alternative to the digital computer as a model for brain function. Evidence from our EEG research on the olfactory bulb suggests that the brain may indeed use computational mechanisms like those found in connectionist models. In the present paper we discuss our data and develop a model to describe the neural dynamics responsible for odor recognition and discrimination. The results indicate the existence of sensory- and motor-specific information in the spatial dimension of EEG activity and call for new physiological metaphors and techniques of analysis. Special emphasis is placed in our model on chaotic neural activity. We hypothesize that chaotic behavior serves as the essential ground state for the neural perceptual apparatus, and we propose a mechanism for acquiring new forms of patterned activity corresponding to new learned odors. Finally, some of the implications of our neural model for behavioral theories are briefly discussed. Our research, in concert with the connectionist work, encourages a reevaluation of explanatory models that are based only on the digital computer metaphor.

1,797 citations

Book ChapterDOI
TL;DR: This chapter presents an example that illustrates the use of MODELLER to construct a comparative model for a protein with unknown structure, and shows the potential for this technique to bridge the sequence-structure gap in protein structure modeling.
Abstract: Genome sequencing projects have resulted in a rapid increase in the number of known protein sequences. In contrast, only about one-hundredth of these sequences have been characterized using experimental structure determination methods. Computational protein structure modeling techniques have the potential to bridge this sequence-structure gap. This chapter presents an example that illustrates the use of MODELLER to construct a comparative model for a protein with unknown structure. Automation of similar protocols (correction of protcols) has resulted in models of useful accuracy for domains in more than half of all known protein sequences.

1,773 citations

Proceedings ArticleDOI
24 Oct 1984
TL;DR: The structure, Fibonacci heaps (abbreviated F-heaps), extends the binomial queues proposed by Vuillemin and studied further by Brown to obtain improved running times for several network optimization algorithms.
Abstract: In this paper we develop a new data structure for implementing heaps (priority queues). Our structure, Fibonacci heaps (abbreviated F-heaps), extends the binomial queues proposed by Vuillemin and studied further by Brown. F-heaps support arbitrary deletion from an n-item heap in 0(log n) amortized time and all other standard heap operations in 0(1) amortized time. Using F-heaps we are able to obtain improved running times for several network optimization algorithms.

1,757 citations

Book ChapterDOI
TL;DR: In this article, the authors give three successively stronger definitions of positive dependence, and investigate their consequences, explore the strength of each definition through a number of examples, and give some statistical applications.
Abstract: Problems involving dependent pairs of variables (X, Y) have been studied most intensively in the case of bivariate normal distributions and of 2 × 2 tables. This is due primarily to the importance of these cases but perhaps partly also to the fact that they exhibit only a particularly simple form of dependence. (See Examples 9(i) and 10 in Section 7.) Studies involving the general case center mainly around two problems: (i) tests of independence; (ii) definition and estimation of measures of association. In most treatments of these problems, there occurs implicitly a concept which is of importance also in other contexts (for example, the evaluation of the performance of certain multiple decision procedures), the concept of positive (or negative) dependence or association. Tests of independence, for example those based on rank correlation, Kendall’s Z-statistic, or normal scores, are usually not omnibus tests (for a discussion of such tests see [4], [15] and [17], but designed to detect rather specific types of alternatives, namely those for which large values of Y tend to be associated with large values of X and small values of Y with small values of X (positive dependence) or the opposite case of negative dependence in which large values of one variable tend to be associated with small values of the other. Similarly, measures of association are typically designed to measure the degree of this kind of association. The purpose of the present paper is to give three successively stronger definitions of positive dependence, to investigate their consequences, explore the strength of each definition through a number of examples, and to give some statistical applications.

1,682 citations

PatentDOI
10 Aug 2001-Cell
TL;DR: A detailed analysis of the patterns of expression of T1Rs and T2Rs is presented, thus providing a view of the representation of sweet and bitter taste at the periphery.

1,652 citations


Authors

Showing all 55232 results

NameH-indexPapersCitations
Meir J. Stampfer2771414283776
George M. Whitesides2401739269833
Michael Karin236704226485
Fred H. Gage216967185732
Rob Knight2011061253207
Martin White1962038232387
Simon D. M. White189795231645
Scott M. Grundy187841231821
Peidong Yang183562144351
Patrick O. Brown183755200985
Michael G. Rosenfeld178504107707
George M. Church172900120514
David Haussler172488224960
Yang Yang1712644153049
Alan J. Heeger171913147492
Network Information
Related Institutions (5)
Cornell University
235.5K papers, 12.2M citations

95% related

University of California, Berkeley
265.6K papers, 16.8M citations

94% related

University of Minnesota
257.9K papers, 11.9M citations

94% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

94% related

Stanford University
320.3K papers, 21.8M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202322
2022105
2021775
20201,069
20191,225
20181,684