scispace - formally typeset
Search or ask a question
Institution

University of California

EducationOakland, California, United States
About: University of California is a education organization based out in Oakland, California, United States. It is known for research contribution in the topics: Population & Layer (electronics). The organization has 55175 authors who have published 52933 publications receiving 1491169 citations. The organization is also known as: UC & University of California System.


Papers
More filters
Journal ArticleDOI
TL;DR: Random phase approximation (RPA) is a promising post-Kohn-Sham method to treat electron correlation in molecules, surfaces, and solids as mentioned in this paper, and it has been applied to various molecular and solid-state properties, including relative energies of conformers, reaction energies involving weak and covalent interactions.
Abstract: In the past decade, the random phase approximation (RPA) has emerged as a promising post-Kohn–Sham method to treat electron correlation in molecules, surfaces, and solids. In this review, we explain how RPA arises naturally as a zero-order approximation from the adiabatic connection and the fluctuation-dissipation theorem in a density functional context. This is contrasted to RPA with exchange (RPAX) in a post-Hartree–Fock context. In both methods, RPA and RPAX, the correlation energy may be expressed as a sum over zero-point energies of harmonic oscillators representing collective electronic excitations, consistent with the physical picture originally proposed by Bohm and Pines. The extra factor 1/2 in the RPAX case is rigorously derived. Approaches beyond RPA are briefly summarized. We also review computational strategies implementing RPA. The combination of auxiliary expansions and imaginary frequency integration methods has lead to recent progress in this field, making RPA calculations affordable for systems with over 100 atoms. Finally, we summarize benchmark applications of RPA to various molecular and solid-state properties, including relative energies of conformers, reaction energies involving weak and covalent interactions, diatomic potential energy curves, ionization potentials and electron affinities, surface adsorption energies, bulk cohesive energies and lattice constants. RPA barrier heights for an extended benchmark set are presented. RPA is an order of magnitude more accurate than semi-local functionals such as B3LYP for non-covalent interactions rivaling the best empirically parametrized methods. Larger but systematic errors are observed for processes that do not conserve the number of electron pairs, such as atomization and ionization.

359 citations

Book ChapterDOI
TL;DR: Transgenic analysis in different plant species revealed that cold tolerance can be significantly enhanced by genetic engineering CBF pathway, and cold stress-regulated miRNAs have been identified in Arabidopsis and rice.
Abstract: Cold stress adversely affects plant growth and development and thus limits crop productivity. Diverse plant species tolerate cold stress to a varying degree, which depends on reprogramming gene expression to modify their physiology, metabolism, and growth. Cold signal in plants is transmitted to activate CBF-dependent (C-repeat/drought-responsive element binding factor-dependent) and CBF-independent transcriptional pathway, of which CBF-dependent pathway activates CBF regulon. CBF transcription factor genes are induced by the constitutively expressed ICE1 (inducer of CBF expression 1) by binding to the CBF promoter. ICE1-CBF cold response pathway is conserved in diverse plant species. Transgenic analysis in different plant species revealed that cold tolerance can be significantly enhanced by genetic engineering CBF pathway. Posttranscriptional regulation at pre-mRNA processing and export from nucleus plays a role in cold acclimation. Small noncoding RNAs, namely micro-RNAs (miRNAs) and small interfering RNAs (siRNAs), are emerging as key players of posttranscriptional gene silencing. Cold stress-regulated miRNAs have been identified in Arabidopsis and rice. In this chapter, recent advances on cold stress signaling and tolerance are highlighted.

358 citations

Patent
08 Feb 2001
TL;DR: In this paper, a cross-connect switch for fiber-optic communication networks employing a wavelength dispersive element, such as a grating, and a stack of regular (non-wavelength selective) cross bar switches using two-dimensional arrays of micromachined, electrically actuated, individually-tiltable, controlled deflection micro-mirrors for providing multiport switching capability for a plurality of wavelengths.
Abstract: A cross-connect switch for fiber-optic communication networks employing a wavelength dispersive element, such as a grating, and a stack of regular (non-wavelength selective) cross bar switches using two-dimensional arrays of micromachined, electrically actuated, individually-tiltable, controlled deflection micro-mirrors for providing multiport switching capability for a plurality of wavelengths. Using a one-dimensional micromirror array, a fiber-optic based MEMS switched spectrometer that does not require mechanical motion of bulk components or large diode arrays can be constructed with readout capability for WDM network diagnosis or for general purpose spectroscopic applications.

357 citations

PatentDOI
TL;DR: The invention relates to the fabrication and use of biosensors comprising a plurality of optical fibers each fiber having attached to its "sensor end" biological "binding partners" (molecules that specifically bind other molecules to form a binding complex such as antibody-antigen, lectin-carbohydrate, nucleic acid-nucleic acid, biotin-avidin, etc.).

357 citations


Authors

Showing all 55232 results

NameH-indexPapersCitations
Meir J. Stampfer2771414283776
George M. Whitesides2401739269833
Michael Karin236704226485
Fred H. Gage216967185732
Rob Knight2011061253207
Martin White1962038232387
Simon D. M. White189795231645
Scott M. Grundy187841231821
Peidong Yang183562144351
Patrick O. Brown183755200985
Michael G. Rosenfeld178504107707
George M. Church172900120514
David Haussler172488224960
Yang Yang1712644153049
Alan J. Heeger171913147492
Network Information
Related Institutions (5)
Cornell University
235.5K papers, 12.2M citations

95% related

University of California, Berkeley
265.6K papers, 16.8M citations

94% related

University of Minnesota
257.9K papers, 11.9M citations

94% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

94% related

Stanford University
320.3K papers, 21.8M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202322
2022105
2021775
20201,069
20191,225
20181,684