scispace - formally typeset
Search or ask a question
Institution

University of California

EducationOakland, California, United States
About: University of California is a education organization based out in Oakland, California, United States. It is known for research contribution in the topics: Population & Layer (electronics). The organization has 55175 authors who have published 52933 publications receiving 1491169 citations. The organization is also known as: UC & University of California System.


Papers
More filters
Journal ArticleDOI
TL;DR: This article provides an overview of generative learning theory, grounded in Wittrock’s (1974) generative model of comprehension and reflected in more recent frameworks of active learning, such as Mayer's (2014) select-organize-integrate (SOI) framework.
Abstract: Generative learning involves actively making sense of to-be-learned information by mentally reorganizing and integrating it with one’s prior knowledge, thereby enabling learners to apply what they have learned to new situations. In this article, we present eight learning strategies intended to promote generative learning: summarizing, mapping, drawing, imagining, self-testing, self-explaining, teaching, and enacting. First, we provide an overview of generative learning theory, grounded in Wittrock’s (1974) generative model of comprehension and reflected in more recent frameworks of active learning, such as Mayer’s (2014) select-organize-integrate (SOI) framework. Next, for each of the eight generative learning strategies, we provide a description, review exemplary research studies, discuss potential boundary conditions, and provide practical recommendations for implementation. Finally, we discuss the implications of generative learning for the science of learning, and we suggest directions for further research.

357 citations

Patent
30 Nov 1995
TL;DR: In this article, a controller comprised of a digital computer directs movement of a deposition zone along a tool path and provides control signals to adjust apparatus functions, such as the speed at which a deposition head which delivers the laser beam and powder to the deposition zone moves along the tool path.
Abstract: Method and apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. Preferably the tool path and other parameters of the deposition process are established using computer-aided design and manufacturing techniques. A controller comprised of a digital computer directs movement of a deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which a deposition head which delivers the laser beam and powder to the deposition zone moves along the tool path.

356 citations

Book ChapterDOI
01 Jan 2001
TL;DR: In this paper, the authors present a security analysis of Onion Routing, an application independent infrastructure for traffic-analysis resistant and anonymous Internet connections, including an overview of the current system design, definitions of security goals and new adversary models.
Abstract: This paper presents a security analysis of Onion Routing, an application independent infrastructure for traffic-analysis-resistant and anonymous Internet connections. It also includes an overview of the current system design, definitions of security goals and new adversary models.

356 citations

Patent
14 Jan 1991
TL;DR: A fluorescent scanner for scanning the fluorescence from a fluorescence labeled separated sample on a sample carrier including a confocal microscope for illuminating a predetermined volume of the sample carrier and/or receiving and processing fluorescence emissions from said volume to provide a display of the separated sample as mentioned in this paper.
Abstract: A fluorescent scanner for scanning the fluorescence from a fluorescence labeled separated sample on a sample carrier including a confocal microscope for illuminating a predetermined volume of the sample carrier and/or receiving and processing fluorescence emissions from said volume to provide a display of the separated sample.

356 citations

Journal ArticleDOI
TL;DR: Grossniklaus et al. as mentioned in this paper used a map-based strategy to identify a mutation in Arabidopsis, f644, that allows for replication of the central cell and subsequent endosperm development without fertilization.
Abstract: Higher plant reproduction is unique because two cells are fertilized in the haploid female gametophyte. Egg and sperm nuclei fuse to form the embryo. A second sperm nucleus fuses with the central cell nucleus that replicates to generate the endosperm, a tissue that supports embryo development. To understand mechanisms that initiate reproduction, we isolated a mutation in Arabidopsis, f644, that allows for replication of the central cell and subsequent endosperm development without fertilization. When mutant f644 egg and central cells are fertilized by wild-type sperm, embryo development is inhibited, and endosperm is overproduced. By using a map-based strategy, we cloned and sequenced the F644 gene and showed that it encodes a SET-domain polycomb protein. Subsequently, we found that F644 is identical to MEDEA (MEA), a gene whose maternal-derived allele is required for embryogenesis [Grossniklaus, U., Vielle-Calzada, J.-P., Hoeppner, M. A. & Gagliano, W. B. (1998) Science 280, 446–450]. Together, these results reveal functions for plant polycomb proteins in the suppression of central cell proliferation and endosperm development. We discuss models to explain how polycomb proteins function to suppress endosperm and promote embryo development.

355 citations


Authors

Showing all 55232 results

NameH-indexPapersCitations
Meir J. Stampfer2771414283776
George M. Whitesides2401739269833
Michael Karin236704226485
Fred H. Gage216967185732
Rob Knight2011061253207
Martin White1962038232387
Simon D. M. White189795231645
Scott M. Grundy187841231821
Peidong Yang183562144351
Patrick O. Brown183755200985
Michael G. Rosenfeld178504107707
George M. Church172900120514
David Haussler172488224960
Yang Yang1712644153049
Alan J. Heeger171913147492
Network Information
Related Institutions (5)
Cornell University
235.5K papers, 12.2M citations

95% related

University of California, Berkeley
265.6K papers, 16.8M citations

94% related

University of Minnesota
257.9K papers, 11.9M citations

94% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

94% related

Stanford University
320.3K papers, 21.8M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202322
2022105
2021775
20201,069
20191,225
20181,684