scispace - formally typeset
Search or ask a question
Institution

University of California, Davis

EducationDavis, California, United States
About: University of California, Davis is a education organization based out in Davis, California, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 78770 authors who have published 180033 publications receiving 8064158 citations. The organization is also known as: UC Davis & UCD.
Topics: Population, Poison control, Gene, Galaxy, Genome


Papers
More filters
Journal ArticleDOI
01 May 1991-Geology
TL;DR: In this paper, a hypothesis for a late Precambrian fit of western North America with the Australia-Antarctic shield region permits the extension of many features through Antarctica and into other parts of Gondwana.
Abstract: A hypothesis for a late Precambrian fit of western North America with the Australia-Antarctic shield region permits the extension of many features through Antarctica and into other parts of Gondwana. Specifically, the Grenville orogen may extend around the coast of East Antarctica into India and Australia. The Wopmay orogen of northwest Canada may extend through eastern Australia into Antarctica and thence beneath the ice to connect with the Yavapai-Mazatzal orogens of the southwestern United States. The ophiolitic belt of the latter may extend into East Antarctica. Counterparts of the Precambrian-Paleozoic sedimentary rocks along the U.S. Cordilleran miogeocline may be present in the Transantarctic Mountains. Orogenic belt boundaries provide useful piercing points for Precambrian continental reconstructions. The model implies that Gondwana and Laurentia rifted away from each other on one margin and collided some 300 m.y. later on their opposite margins to form the Appalachians.

845 citations

Journal ArticleDOI
19 Sep 1996-Nature
TL;DR: In this paper, the role of the medial temporal lobe in novelty processing was examined in patients with damage to the posterior hippocampal region, and it was shown that unexpected novel stimuli produce a characteristic ERP signal, accompanied by an autonomic skin response.
Abstract: THE ability to respond to unexpected stimuli (the 'orienting response') is a fundamental characteristic of mammalian behaviour1, but the brain mechanisms by which novelty is detected remain poorly defined. Electrophysiological recordings of scalp and intracranial event-related potentials (ERPs) have shown that novel stimuli activate a distributed network involving prefrontal and posterior association cortex2–6. In addition, ERP7,8 and single-neuron9,10 recordings, as well as neuroimaging11 and modelling12 studies, have suggested that temporal cortical regions, including the hippocampus, are also involved. To examine further the role of the medial temporal lobe in novelty processing, I measured physiological responses to novel auditory and tactile stimuli in patients with damage to the posterior hippocampal region. In normal control subjects, unexpected novel stimuli produce a characteristic ERP signal, accompanied by an autonomic skin response. Both responses are reduced in hippocampal lesion patients, whereas the response to expected control stimuli is unaffected. Thus the hippocampal region, in addition to its known role in memory formation, is an essential component of the distributed limbic–cortical network that detects and responds to novel stimuli.

845 citations

Journal ArticleDOI
30 Sep 1999-Nature
TL;DR: Stable isotope ratios are used to detect changes in food-web structure following perturbations of smallmouth bass and rock bass into Canadian lakes, showing that invasion was followed by substantial declines in littoral prey-fish abundance and the trophic position of lake trout.
Abstract: Species invasions pose a serious threat to biodiversity and native ecosystems1,2; however, predicting and quantifying the impacts of invasive species has proven problematic3,4,5,6. Here we use stable isotope ratios to document the food-web consequences of the invasion of two non-native predators, smallmouth bass and rock bass, into Canadian lakes. Invaded lakes had lower littoral prey-fish diversity and abundance than uninvaded reference lakes. Consistent with this difference, lake trout from invaded lakes had more negative δ13C values (-29.2‰ versus -27.4‰) and reduced trophic positions (3.3 versus 3.9) than those from reference lakes, indicating differences in food-web structure. Furthermore, a comparison of the pre- and post-invasion food webs of two recently invaded lakes showed that invasion was followed by substantial declines in littoral prey-fish abundance and the trophic position of lake trout, reflecting a shift in the diet of lake trout towards zooplankton and reduced dependence on littoral fish. This study demonstrates the use of stable isotope techniques to detect changes in food-web structure following perturbations; in this instance, bass-induced food-web shifts may have severe consequences for native species and ecosystems.

845 citations

Journal ArticleDOI
TL;DR: The fabrication methods and physical properties of ordered magnetic nanostructures with dimensions on the submicron to nanometer scale are reviewed in this article, where various types of nanofabrication techniques are described, and their capabilities and limitations in achieving magnetic nano-structures are discussed.

842 citations

Journal ArticleDOI
01 Dec 1997-Nature
TL;DR: In this paper, the authors reported experimental measurements on living symbiotic and non-symbiotic plankton foraminifera (Orbulina universa and Globigerina bulloides respectively) showing that the 13C/12C and 18O/16O ratios of the calcite shells decrease with increasing seawater [CO32−].
Abstract: Stable oxygen and carbon isotope measurements on biogenic calcite and aragonite have become standard tools for reconstructing past oceanographic and climatic change. In aquatic organisms, 18O/16O ratios in the shell carbonate are a function of the ratio in the sea water and the calcification temperature1. In contrast, 13C/12C ratios are controlled by the ratio of dissolved inorganic carbon in sea water and physiological processes such as respiration and symbiont photosynthesis2. These geochemical proxies have been used with analyses of foraminifera shells to reconstruct global ice volumes3, surface and deep ocean temperatures4,5, ocean circulation changes6 and glacial–interglacial exchange between the terrestrial and oceanic carbon pools7. Here, we report experimental measurements on living symbiotic and non-symbiotic plankton foraminifera (Orbulina universa and Globigerina bulloides respectively) showing that the 13C/12C and 18O/16O ratios of the calcite shells decrease with increasing seawater [CO32−]. Because glacial-period oceans had higher pH and [CO32−] than today8, these new relationships confound the standard interpretation of glacial foraminiferal stable-isotope data. In particular, the hypothesis that the glacial–interglacial shift in the 13C/12C ratio was due to a transfer of terrestrial carbon into the ocean7 can be explained alternatively by an increase in ocean alkalinity25. A carbonate-concentration effect could also help explain some of the extreme stable-isotope variations during the Proterozoic and Phanerozoic aeons9.

841 citations


Authors

Showing all 79538 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Ronald C. Kessler2741332328983
George M. Whitesides2401739269833
Ronald M. Evans199708166722
Virginia M.-Y. Lee194993148820
Scott M. Grundy187841231821
Julie E. Buring186950132967
Patrick O. Brown183755200985
Anil K. Jain1831016192151
John C. Morris1831441168413
Douglas R. Green182661145944
John R. Yates1771036129029
Barry Halliwell173662159518
Roderick T. Bronson169679107702
Hongfang Liu1662356156290
Network Information
Related Institutions (5)
Cornell University
235.5K papers, 12.2M citations

98% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

97% related

University of Minnesota
257.9K papers, 11.9M citations

97% related

University of Pennsylvania
257.6K papers, 14.1M citations

95% related

University of Washington
305.5K papers, 17.7M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023262
20221,122
20218,398
20208,661
20198,165
20187,556