scispace - formally typeset
Search or ask a question
Institution

University of California, Irvine

EducationIrvine, California, United States
About: University of California, Irvine is a education organization based out in Irvine, California, United States. It is known for research contribution in the topics: Population & Galaxy. The organization has 47031 authors who have published 113602 publications receiving 5521832 citations. The organization is also known as: UC Irvine & UCI.


Papers
More filters
Proceedings ArticleDOI
20 Jun 2011
TL;DR: A near-optimal algorithm based on dynamic programming which runs in time linear in the number of objects andlinear in the sequence length is given which results in state-of-the-art performance.
Abstract: We analyze the computational problem of multi-object tracking in video sequences. We formulate the problem using a cost function that requires estimating the number of tracks, as well as their birth and death states. We show that the global solution can be obtained with a greedy algorithm that sequentially instantiates tracks using shortest path computations on a flow network. Greedy algorithms allow one to embed pre-processing steps, such as nonmax suppression, within the tracking algorithm. Furthermore, we give a near-optimal algorithm based on dynamic programming which runs in time linear in the number of objects and linear in the sequence length. Our algorithms are fast, simple, and scalable, allowing us to process dense input data. This results in state-of-the-art performance.

904 citations

Journal ArticleDOI
28 Sep 2006-Nature
TL;DR: The results indicate that wetland emissions dominated the inter-annual variability of methane sources, whereas fire emissions played a smaller role, except during the 1997–1998 El Niño event.
Abstract: Methane is an important greenhouse gas, and its atmospheric concentration has nearly tripled since pre-industrial times(1). The growth rate of atmospheric methane is determined by the balance between surface emissions and photochemical destruction by the hydroxyl radical, the major atmospheric oxidant. Remarkably, this growth rate has decreased(2) markedly since the early 1990s, and the level of methane has remained relatively constant since 1999, leading to a downward revision of its projected influence on global temperatures. Large fluctuations in the growth rate of atmospheric methane are also observed from one year to the next(2), but their causes remain uncertain(2-13). Here we quantify the processes that controlled variations in methane emissions between 1984 and 2003 using an inversion model of atmospheric transport and chemistry. Our results indicate that wetland emissions dominated the inter-annual variability of methane sources, whereas fire emissions played a smaller role, except during the 1997 - 1998 El Nino event. These top-down estimates of changes in wetland and fire emissions are in good agreement with independent estimates based on remote sensing information and biogeochemical models. On longer timescales, our results show that the decrease in atmospheric methane growth during the 1990s was caused by a decline in anthropogenic emissions. Since 1999, however, they indicate that anthropogenic emissions of methane have risen again. The effect of this increase on the growth rate of atmospheric methane has been masked by a coincident decrease in wetland emissions, but atmospheric methane levels may increase in the near future if wetland emissions return to their mean 1990s levels.

902 citations

Book
09 Jan 2009
TL;DR: This tutorial affords the participant an extensive treatment of the field of software architecture, its foundation, principles, and elements, including those mentioned above, and looks at emerging and likely future trends in this field.
Abstract: Software architecture has become a centerpiece subject for software engineers, both researchers and practitioners alike. At the heart of every software system is its software architecture, i.e., "the set of principal design decisions about the system". Architecture permeates all major facets of a software system, for principal design decisions may potentially be made at any time during a system's lifetime, and potentially by any stakeholder. Such decisions encompass structural concerns, such as the system's high-level building blocks---components, connectors, and configurations; the system's deployment; the system's non-functional properties; and the system's evolution patterns, including runtime adaptation. Software architectures found particularly useful for families of systems---product lines---are often codified into architectural patterns, architectural styles, and reusable, parameterized reference architectures. This tutorial affords the participant an extensive treatment of the field of software architecture, its foundation, principles, and elements, including those mentioned above. Additionally, the tutorial introduces the participants to the state-of-the-art as well as the state-of-the-practice in software architecture, and looks at emerging and likely future trends in this field. The discussion is illustrated with numerous real-world examples. One example given prominent treatment is the architecture of the World Wide Web and its underlying architectural style, REpresentational State Transfer (REST).

902 citations

Journal ArticleDOI
08 Feb 2008-Cell
TL;DR: It is shown that the distribution of cohesins on mammalian chromosome arms is not driven by transcriptional activity, in contrast to S. cerevisiae, and recruitment by CTCF suggests a rationale for noncanonical cohesin functions and, because C TCF binding is sensitive to DNA methylation, allows cohesIn positioning to integrate DNA sequence and epigenetic state.

901 citations


Authors

Showing all 47751 results

NameH-indexPapersCitations
Daniel Levy212933194778
Rob Knight2011061253207
Lewis C. Cantley196748169037
Dennis W. Dickson1911243148488
Terrie E. Moffitt182594150609
Joseph Biederman1791012117440
John R. Yates1771036129029
John A. Rogers1771341127390
Avshalom Caspi170524113583
Yang Gao1682047146301
Carl W. Cotman165809105323
John H. Seinfeld165921114911
Gregg C. Fonarow1611676126516
Jerome I. Rotter1561071116296
David Cella1561258106402
Network Information
Related Institutions (5)
Stanford University
320.3K papers, 21.8M citations

97% related

Columbia University
224K papers, 12.8M citations

97% related

University of Washington
305.5K papers, 17.7M citations

97% related

University of California, Los Angeles
282.4K papers, 15.7M citations

97% related

University of Michigan
342.3K papers, 17.6M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20242
2023252
20221,224
20216,519
20206,348
20195,610