scispace - formally typeset
Search or ask a question
Institution

University of California, Irvine

EducationIrvine, California, United States
About: University of California, Irvine is a education organization based out in Irvine, California, United States. It is known for research contribution in the topics: Population & Galaxy. The organization has 47031 authors who have published 113602 publications receiving 5521832 citations. The organization is also known as: UC Irvine & UCI.
Topics: Population, Galaxy, Poison control, Cancer, Gene


Papers
More filters
Journal ArticleDOI
23 May 2002-Nature
TL;DR: It is shown that prokineticin 2 (PK2), a cysteine-rich secreted protein, functions as an output molecule from the suprachiasmatic nucleus (SCN) circadian clock.
Abstract: The suprachiasmatic nucleus (SCN) controls the circadian rhythm of physiological and behavioural processes in mammals. Here we show that prokineticin 2 (PK2), a cysteine-rich secreted protein, functions as an output molecule from the SCN circadian clock. PK2 messenger RNA is rhythmically expressed in the SCN, and the phase of PK2 rhythm is responsive to light entrainment. Molecular and genetic studies have revealed that PK2 is a gene that is controlled by a circadian clock (clock-controlled). Receptor for PK2 (PKR2) is abundantly expressed in major target nuclei of the SCN output pathway. Inhibition of nocturnal locomotor activity in rats by intracerebroventricular delivery of recombinant PK2 during subjective night, when the endogenous PK2 mRNA level is low, further supports the hypothesis that PK2 is an output molecule that transmits behavioural circadian rhythm. The high expression of PKR2 mRNA within the SCN and the positive feedback of PK2 on its own transcription through activation of PKR2 suggest that PK2 may also function locally within the SCN to synchronize output.

683 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that colliders can impose strong constraints on models of dark matter, in particular when the dark matter is light, and that the LHC can outperform spin-dependent searches by an order of magnitude or better over much of the parameter space.
Abstract: We show that colliders can impose strong constraints on models of dark matter, in particular, when the dark matter is light. We analyze models where the dark matter is a fermion or scalar interacting with quarks and/or gluons through an effective theory containing higher dimensional operators which represent heavier states that have been integrated out of the effective field theory. We determine bounds from existing Tevatron searches for monojets as well as expected LHC reaches for a discovery. We find that colliders can provide information which is complementary or in some cases even superior to experiments searching for direct detection of dark matter through its scattering with nuclei. In particular, both the Tevatron and the LHC can outperform spin-dependent searches by an order of magnitude or better over much of the parameter space, and if the dark matter couples mainly to gluons, the LHC can place bounds superior to any spin-independent search.

682 citations

Journal ArticleDOI
27 Mar 2003-Nature
TL;DR: By matching model output to phylogenetic patterns seen in sequence data collected through global surveillance, it is found that short-lived strain-transcending immunity is essential to restrict viral diversity in the host population and thus to explain key aspects of drift and shift dynamics.
Abstract: In pandemic and epidemic forms, influenza causes substantial, sometimes catastrophic, morbidity and mortality. Intense selection from the host immune system drives antigenic change in influenza A and B, resulting in continuous replacement of circulating strains with new variants able to re-infect hosts immune to earlier types. This ‘antigenic drift’1 often requires a new vaccine to be formulated before each annual epidemic. However, given the high transmissibility and mutation rate of influenza, the constancy of genetic diversity within lineages over time is paradoxical. Another enigma is the replacement of existing strains during a global pandemic caused by ‘antigenic shift’—the introduction of a new avian influenza A subtype into the human population1. Here we explore ecological and immunological factors underlying these patterns using a mathematical model capturing both realistic epidemiological dynamics and viral evolution at the sequence level. By matching model output to phylogenetic patterns seen in sequence data collected through global surveillance2, we find that short-lived strain-transcending immunity is essential to restrict viral diversity in the host population and thus to explain key aspects of drift and shift dynamics.

682 citations

Journal ArticleDOI
Gilberto Pastorello1, Carlo Trotta2, E. Canfora2, Housen Chu1  +300 moreInstitutions (119)
TL;DR: The FLUXNET2015 dataset provides ecosystem-scale data on CO 2 , water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe, and is detailed in this paper.
Abstract: The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.

681 citations

Journal ArticleDOI
TL;DR: A deeper understanding of the fundamental challenges faced for wearable sensors and of the state-of-the-art for wearable sensor technology, the roadmap becomes clearer for creating the next generation of innovations and breakthroughs.
Abstract: Wearable sensors have recently seen a large increase in both research and commercialization. However, success in wearable sensors has been a mix of both progress and setbacks. Most of commercial progress has been in smart adaptation of existing mechanical, electrical and optical methods of measuring the body. This adaptation has involved innovations in how to miniaturize sensing technologies, how to make them conformal and flexible, and in the development of companion software that increases the value of the measured data. However, chemical sensing modalities have experienced greater challenges in commercial adoption, especially for non-invasive chemical sensors. There have also been significant challenges in making significant fundamental improvements to existing mechanical, electrical, and optical sensing modalities, especially in improving their specificity of detection. Many of these challenges can be understood by appreciating the body's surface (skin) as more of an information barrier than as an information source. With a deeper understanding of the fundamental challenges faced for wearable sensors and of the state-of-the-art for wearable sensor technology, the roadmap becomes clearer for creating the next generation of innovations and breakthroughs.

680 citations


Authors

Showing all 47751 results

NameH-indexPapersCitations
Daniel Levy212933194778
Rob Knight2011061253207
Lewis C. Cantley196748169037
Dennis W. Dickson1911243148488
Terrie E. Moffitt182594150609
Joseph Biederman1791012117440
John R. Yates1771036129029
John A. Rogers1771341127390
Avshalom Caspi170524113583
Yang Gao1682047146301
Carl W. Cotman165809105323
John H. Seinfeld165921114911
Gregg C. Fonarow1611676126516
Jerome I. Rotter1561071116296
David Cella1561258106402
Network Information
Related Institutions (5)
Stanford University
320.3K papers, 21.8M citations

97% related

Columbia University
224K papers, 12.8M citations

97% related

University of Washington
305.5K papers, 17.7M citations

97% related

University of California, Los Angeles
282.4K papers, 15.7M citations

97% related

University of Michigan
342.3K papers, 17.6M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20242
2023252
20221,224
20216,518
20206,348
20195,610