scispace - formally typeset
Search or ask a question
Institution

University of California, Merced

EducationMerced, California, United States
About: University of California, Merced is a education organization based out in Merced, California, United States. It is known for research contribution in the topics: Population & Computer science. The organization has 2682 authors who have published 8454 publications receiving 285556 citations. The organization is also known as: UC Merced.


Papers
More filters
Journal ArticleDOI
Evan Bolyen1, Jai Ram Rideout1, Matthew R. Dillon1, Nicholas A. Bokulich1, Christian C. Abnet2, Gabriel A. Al-Ghalith3, Harriet Alexander4, Harriet Alexander5, Eric J. Alm6, Manimozhiyan Arumugam7, Francesco Asnicar8, Yang Bai9, Jordan E. Bisanz10, Kyle Bittinger11, Asker Daniel Brejnrod7, Colin J. Brislawn12, C. Titus Brown5, Benjamin J. Callahan13, Andrés Mauricio Caraballo-Rodríguez14, John Chase1, Emily K. Cope1, Ricardo Silva14, Christian Diener15, Pieter C. Dorrestein14, Gavin M. Douglas16, Daniel M. Durall17, Claire Duvallet6, Christian F. Edwardson, Madeleine Ernst18, Madeleine Ernst14, Mehrbod Estaki17, Jennifer Fouquier19, Julia M. Gauglitz14, Sean M. Gibbons15, Sean M. Gibbons20, Deanna L. Gibson17, Antonio Gonzalez14, Kestrel Gorlick1, Jiarong Guo21, Benjamin Hillmann3, Susan Holmes22, Hannes Holste14, Curtis Huttenhower23, Curtis Huttenhower24, Gavin A. Huttley25, Stefan Janssen26, Alan K. Jarmusch14, Lingjing Jiang14, Benjamin D. Kaehler27, Benjamin D. Kaehler25, Kyo Bin Kang14, Kyo Bin Kang28, Christopher R. Keefe1, Paul Keim1, Scott T. Kelley29, Dan Knights3, Irina Koester14, Tomasz Kosciolek14, Jorden Kreps1, Morgan G. I. Langille16, Joslynn S. Lee30, Ruth E. Ley31, Ruth E. Ley32, Yong-Xin Liu, Erikka Loftfield2, Catherine A. Lozupone19, Massoud Maher14, Clarisse Marotz14, Bryan D Martin20, Daniel McDonald14, Lauren J. McIver24, Lauren J. McIver23, Alexey V. Melnik14, Jessica L. Metcalf33, Sydney C. Morgan17, Jamie Morton14, Ahmad Turan Naimey1, Jose A. Navas-Molina34, Jose A. Navas-Molina14, Louis-Félix Nothias14, Stephanie B. Orchanian, Talima Pearson1, Samuel L. Peoples20, Samuel L. Peoples35, Daniel Petras14, Mary L. Preuss36, Elmar Pruesse19, Lasse Buur Rasmussen7, Adam R. Rivers37, Michael S. Robeson38, Patrick Rosenthal36, Nicola Segata8, Michael Shaffer19, Arron Shiffer1, Rashmi Sinha2, Se Jin Song14, John R. Spear39, Austin D. Swafford, Luke R. Thompson40, Luke R. Thompson41, Pedro J. Torres29, Pauline Trinh20, Anupriya Tripathi14, Peter J. Turnbaugh10, Sabah Ul-Hasan42, Justin J. J. van der Hooft43, Fernando Vargas, Yoshiki Vázquez-Baeza14, Emily Vogtmann2, Max von Hippel44, William A. Walters31, Yunhu Wan2, Mingxun Wang14, Jonathan Warren45, Kyle C. Weber46, Kyle C. Weber37, Charles H. D. Williamson1, Amy D. Willis20, Zhenjiang Zech Xu14, Jesse R. Zaneveld20, Yilong Zhang47, Qiyun Zhu14, Rob Knight14, J. Gregory Caporaso1 
TL;DR: QIIME 2 development was primarily funded by NSF Awards 1565100 to J.G.C. and R.K.P. and partial support was also provided by the following: grants NIH U54CA143925 and U54MD012388.
Abstract: QIIME 2 development was primarily funded by NSF Awards 1565100 to J.G.C. and 1565057 to R.K. Partial support was also provided by the following: grants NIH U54CA143925 (J.G.C. and T.P.) and U54MD012388 (J.G.C. and T.P.); grants from the Alfred P. Sloan Foundation (J.G.C. and R.K.); ERCSTG project MetaPG (N.S.); the Strategic Priority Research Program of the Chinese Academy of Sciences QYZDB-SSW-SMC021 (Y.B.); the Australian National Health and Medical Research Council APP1085372 (G.A.H., J.G.C., Von Bing Yap and R.K.); the Natural Sciences and Engineering Research Council (NSERC) to D.L.G.; and the State of Arizona Technology and Research Initiative Fund (TRIF), administered by the Arizona Board of Regents, through Northern Arizona University. All NCI coauthors were supported by the Intramural Research Program of the National Cancer Institute. S.M.G. and C. Diener were supported by the Washington Research Foundation Distinguished Investigator Award.

8,821 citations

Journal ArticleDOI
18 Aug 2006-Science
TL;DR: It is shown that large wildfire activity increased suddenly and markedly in the mid-1980s, with higher large-wildfire frequency, longer wildfire durations, and longer wildfire seasons.
Abstract: Western United States forest wildfire activity is widely thought to have increased in recent decades, yet neither the extent of recent changes nor the degree to which climate may be driving regional changes in wildfire has been systematically documented. Much of the public and scientific discussion of changes in western United States wildfire has focused instead on the effects of 19th- and 20th-century land-use history. We compiled a comprehensive database of large wildfires in western United States forests since 1970 and compared it with hydroclimatic and land-surface data. Here, we show that large wildfire activity increased suddenly and markedly in the mid-1980s, with higher large-wildfire frequency, longer wildfire durations, and longer wildfire seasons. The greatest increases occurred in mid-elevation, Northern Rockies forests, where land-use histories have relatively little effect on fire risks and are strongly associated with increased spring and summer temperatures and an earlier spring snowmelt.

4,701 citations

Proceedings ArticleDOI
23 Jun 2013
TL;DR: Large scale experiments are carried out with various evaluation criteria to identify effective approaches for robust tracking and provide potential future research directions in this field.
Abstract: Object tracking is one of the most important components in numerous applications of computer vision. While much progress has been made in recent years with efforts on sharing code and datasets, it is of great importance to develop a library and benchmark to gauge the state of the art. After briefly reviewing recent advances of online object tracking, we carry out large scale experiments with various evaluation criteria to understand how these algorithms perform. The test image sequences are annotated with different attributes for performance evaluation and analysis. By analyzing quantitative results, we identify effective approaches for robust tracking and provide potential future research directions in this field.

3,828 citations

Journal ArticleDOI
TL;DR: An extensive evaluation of the state-of-the-art online object-tracking algorithms with various evaluation criteria is carried out to identify effective approaches for robust tracking and provide potential future research directions in this field.
Abstract: Object tracking has been one of the most important and active research areas in the field of computer vision. A large number of tracking algorithms have been proposed in recent years with demonstrated success. However, the set of sequences used for evaluation is often not sufficient or is sometimes biased for certain types of algorithms. Many datasets do not have common ground-truth object positions or extents, and this makes comparisons among the reported quantitative results difficult. In addition, the initial conditions or parameters of the evaluated tracking algorithms are not the same, and thus, the quantitative results reported in literature are incomparable or sometimes contradictory. To address these issues, we carry out an extensive evaluation of the state-of-the-art online object-tracking algorithms with various evaluation criteria to understand how these methods perform within the same framework. In this work, we first construct a large dataset with ground-truth object positions and extents for tracking and introduce the sequence attributes for the performance analysis. Second, we integrate most of the publicly available trackers into one code library with uniform input and output formats to facilitate large-scale performance evaluation. Third, we extensively evaluate the performance of 31 algorithms on 100 sequences with different initialization settings. By analyzing the quantitative results, we identify effective approaches for robust tracking and provide potential future research directions in this field.

2,974 citations

Journal ArticleDOI
TL;DR: Current evidence confirms that, as proposed by the Baas-Becking hypothesis, 'the environment selects' and is, in part, responsible for spatial variation in microbial diversity, but recent studies also dispute the idea that 'everything is everywhere'.
Abstract: We review the biogeography of microorganisms in light of the biogeography of macroorganisms A large body of research supports the idea that free-living microbial taxa exhibit biogeographic patterns Current evidence confirms that, as proposed by the Baas-Becking hypothesis, 'the environment selects' and is, in part, responsible for spatial variation in microbial diversity However, recent studies also dispute the idea that 'everything is everywhere' We also consider how the processes that generate and maintain biogeographic patterns in macroorganisms could operate in the microbial world

2,456 citations


Authors

Showing all 2752 results

NameH-indexPapersCitations
Jie Liu131153168891
Ming-Hsuan Yang12763575091
Xuan Zhang119153065398
Weitao Yang85399120206
YangQuan Chen84104836543
H. D. Wahl8280532686
Mark D. Fleming8143336107
Martin S. Hagger8141926815
Xiaolong Wang8196631455
Ji-Xin Cheng7842223398
Tanja Woyke7756527131
Susannah G. Tringe7519825491
Henry Jay Forman7330724061
Bin Liu7287124219
Gil D. Rabinovici7131522742
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Pennsylvania State University
196.8K papers, 8.3M citations

94% related

University of California, Berkeley
265.6K papers, 16.8M citations

93% related

University of California, San Diego
204.5K papers, 12.3M citations

92% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202356
2022116
2021983
2020982
2019841
2018829