scispace - formally typeset
Search or ask a question
Institution

University of California, Santa Barbara

EducationSanta Barbara, California, United States
About: University of California, Santa Barbara is a education organization based out in Santa Barbara, California, United States. It is known for research contribution in the topics: Population & Laser. The organization has 30281 authors who have published 80852 publications receiving 4626827 citations. The organization is also known as: UC Santa Barbara & UCSB.


Papers
More filters
Journal ArticleDOI
25 Jan 2018-Nature
TL;DR: Strong evidence of absorption of the spectrum of the quasar redwards of the Lyman α emission line (the Gunn–Peterson damping wing), as would be expected if a significant amount of the hydrogen in the intergalactic medium surrounding J1342 + 0928 is neutral, and a significant fraction of neutral hydrogen is derived, although the exact fraction depends on the modelling.
Abstract: Observations of a quasar at redshift 7.54, when the Universe was just five per cent of its current age, suggest that the Universe was significantly neutral at this epoch. Despite extensive searches, only one quasar has been known at redshifts greater than 7, at 7.09. Eduardo Banados and colleagues report observations of a quasar at a redshift of 7.54, when the Universe was just 690 million years old, with a black-hole mass 800 million times the mass of the Sun. The spectrum shows that the quasar's Lyman α emission is being substantially absorbed by an intergalactic medium containing significantly neutral hydrogen, indicating that reionization was not complete at that epoch. Quasars are the most luminous non-transient objects known and as a result they enable studies of the Universe at the earliest cosmic epochs. Despite extensive efforts, however, the quasar ULAS J1120 + 0641 at redshift z = 7.09 has remained the only one known at z > 7 for more than half a decade1. Here we report observations of the quasar ULAS J134208.10 + 092838.61 (hereafter J1342 + 0928) at redshift z = 7.54. This quasar has a bolometric luminosity of 4 × 1013 times the luminosity of the Sun and a black-hole mass of 8 × 108 solar masses. The existence of this supermassive black hole when the Universe was only 690 million years old—just five per cent of its current age—reinforces models of early black-hole growth that allow black holes with initial masses of more than about 104 solar masses2,3 or episodic hyper-Eddington accretion4,5. We see strong evidence of absorption of the spectrum of the quasar redwards of the Lyman α emission line (the Gunn–Peterson damping wing), as would be expected if a significant amount (more than 10 per cent) of the hydrogen in the intergalactic medium surrounding J1342 + 0928 is neutral. We derive such a significant fraction of neutral hydrogen, although the exact fraction depends on the modelling. However, even in our most conservative analysis we find a fraction of more than 0.33 (0.11) at 68 per cent (95 per cent) probability, indicating that we are probing well within the reionization epoch of the Universe.

857 citations

Journal ArticleDOI
TL;DR: How the study of invasions can help to inform the understanding of applied problems, such as extinction, ecosystem function and the response of species to climate change is emphasized.
Abstract: Species invasions provide numerous unplanned and frequently, but imperfectly, replicated experiments that can be used to better understand the natural world. Classic studies by Darwin, Grinnell, Elton and others on these species-invasion experiments provided invaluable insights for ecology and evolutionary biology. Recent studies of invasions have resulted in additional insights, six of which we discuss here; these insights highlight the utility of using exotic species as 'model organisms'. We also discuss a nascent hypothesis that might provide a more general, predictive understanding of invasions and community assembly. Finally, we emphasize how the study of invasions can help to inform our understanding of applied problems, such as extinction, ecosystem function and the response of species to climate change.

856 citations

Journal ArticleDOI
TL;DR: This tutorial review will focus on recent developments in covalent stabilisation and tailoring of dynamic nanostructures using a range of chemistries within the assembly to afford robust functional nanoparticles.
Abstract: Supramolecular self assembly techniques have provided a versatile means by which to selectively assemble polymer molecules into well-defined three dimensional core-shell nanostructures. The covalent stabilisation and tailoring of these dynamic nanostructures can be achieved using a range of chemistries within the assembly to afford robust functional nanoparticles. Many examples of the stabilisation, functionalisation and decoration of these nanoparticles have been reported in the literature and this tutorial review will focus on these recent developments and highlight their potential applications.

855 citations

Journal ArticleDOI
TL;DR: Evidence is found that bone consists of mineralized collagen fibrils and a non-fibrillar organic matrix, which acts as a ‘glue’ that holds the mineralized fibril together, and it is believed that this glue may resist the separation of mineralization of bone composite.
Abstract: Properties of the organic matrix of bone as well as its function in the microstructure could be the key to the remarkable mechanical properties of bone. Previously, it was found that on the molecular level, calcium-mediated sacrificial bonds increased stiffness and enhanced energy dissipation in bone constituent molecules. Here we present evidence for how this sacrificial bond and hidden length mechanism contributes to the mechanical properties of the bone composite, by investigating the nanoscale arrangement of the bone constituents and their interactions. We find evidence that bone consists of mineralized collagen fibrils and a non-fibrillar organic matrix, which acts as a 'glue' that holds the mineralized fibrils together. We believe that this glue may resist the separation of mineralized collagen fibrils. As in the case of the sacrificial bonds in single molecules, the effectiveness of this mechanism increases with the presence of Ca2+ ions.

854 citations


Authors

Showing all 30652 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Yi Chen2174342293080
Simon D. M. White189795231645
George Efstathiou187637156228
Peidong Yang183562144351
David R. Williams1782034138789
Alan J. Heeger171913147492
Richard H. Friend1691182140032
Jiawei Han1681233143427
Gang Chen1673372149819
Alexander S. Szalay166936145745
Omar M. Yaghi165459163918
Carlos S. Frenk165799140345
Yang Yang1642704144071
Carlos Bustamante161770106053
Network Information
Related Institutions (5)
University of Maryland, College Park
155.9K papers, 7.2M citations

96% related

Princeton University
146.7K papers, 9.1M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

95% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

95% related

University of California, Berkeley
265.6K papers, 16.8M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023150
2022528
20213,352
20203,653
20193,516