scispace - formally typeset
Search or ask a question
Institution

University of California, Santa Barbara

EducationSanta Barbara, California, United States
About: University of California, Santa Barbara is a education organization based out in Santa Barbara, California, United States. It is known for research contribution in the topics: Population & Galaxy. The organization has 30281 authors who have published 80852 publications receiving 4626827 citations. The organization is also known as: UC Santa Barbara & UCSB.
Topics: Population, Galaxy, Laser, Quantum well, Quantum dot


Papers
More filters
Journal ArticleDOI
19 Dec 2011-PLOS ONE
TL;DR: A compilation of continuous, high-resolution time series of upper ocean pH, collected using autonomous sensors, over a variety of ecosystems ranging from polar to tropical, open-ocean to coastal, kelp forest to coral reef, reveals a continuum of month-long pH variability with characteristic diel, semi-diurnal, and stochastic patterns of varying amplitudes.
Abstract: The effect of Ocean Acidification (OA) on marine biota is quasi-predictable at best. While perturbation studies, in the form of incubations under elevated pCO2, reveal sensitivities and responses of individual species, one missing link in the OA story results from a chronic lack of pH data specific to a given species’ natural habitat. Here, we present a compilation of continuous, high-resolution time series of upper ocean pH, collected using autonomous sensors, over a variety of ecosystems ranging from polar to tropical, open-ocean to coastal, kelp forest to coral reef. These observations reveal a continuum of month-long pH variability with standard deviations from 0.004 to 0.277 and ranges spanning 0.024 to 1.430 pH units. The nature of the observed variability was also highly site-dependent, with characteristic diel, semi-diurnal, and stochastic patterns of varying amplitudes. These biome-specific pH signatures disclose current levels of exposure to both high and low dissolved CO2, often demonstrating that resident organisms are already experiencing pH regimes that are not predicted until 2100. Our data provide a first step toward crystallizing the biophysical link between environmental history of pH exposure and physiological resilience of marine organisms to fluctuations in seawater CO2. Knowledge of this spatial and temporal variation in seawater chemistry allows us to improve the design of OA experiments: we can test organisms with a priori expectations of their tolerance guardrails, based on their natural range of exposure. Such hypothesis-testing will provide a deeper understanding of the effects of OA. Both intuitively simple to understand and powerfully informative, these and similar comparative time series can help guide management efforts to identify areas of marine habitat that can serve as refugia to acidification as well as areas that are particularly vulnerable to future ocean change.

818 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used atomic force microscopy (AFM) to directly observe the progression of surface morphology of InAs deposited by molecular-beam epitaxy on GaAs(100).
Abstract: Using atomic force microscopy (AFM), we have directly observed the progression of surface morphology of InAs deposited by molecular-beam epitaxy on GaAs(100). InAs self-assembled dots (coherent) or relaxed InAs islands (incoherent) are formed depending on the InAs coverage. The InAs coverage was varied continuously and AFM was used to monitor in detail the nucleation and resulting size and shape transition of the InAs self-assembled dots. Dots of uniform size were observed only at the initial stages of this Stranski-Krastanow growth-mode transition. The self-assembled dot density increased very abruptly with total deposited amount of InAs. Treating this InAs growth-mode transition as a first-order phase transition with InAs total coverage as the critical parameter, we extract a critical thickness for surface elastic relaxation of 1.50 ML.

817 citations

Journal ArticleDOI
TL;DR: Evidence that Asians and Asian Americans are more reluctant to explicitly ask for support from close others than are European Americans because they are more concerned about the potentially negative relational consequences of such behaviors is presented.
Abstract: Social support is one of the most effective means by which people can cope with stressful events. Yet little research has examined whether there are cultural differences in how people utilize their social support networks. A review of studies on culture and social support presents evidence that Asians and Asian Americans are more reluctant to explicitly ask for support from close others than are European Americans because they are more concerned about the potentially negative relational consequences of such behaviors. Asians and Asian Americans are more likely to use and benefit from forms of support that do not involve explicit disclosure of personal stressful events and feelings of distress. Discussion centers on the potential implications of these findings for intercultural interactions and for the use of mental health services by Asians and Asian Americans.

817 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +301 moreInstitutions (72)
TL;DR: In this paper, the implications of Planck data for models of dark energy (DE) and modified gravity (MG) beyond the standard cosmological constant scenario were studied, and it was shown that the density of DE at early times has to be below 2% of the critical density, even when forced to play a role for z < 50.
Abstract: We study the implications of Planck data for models of dark energy (DE) and modified gravity (MG) beyond the standard cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansions of the equation of state w(a), as well as principal component analysis and parameterizations related to the potential of a minimally coupled DE scalar field. When estimating the density of DE at early times, we significantly improve present constraints and find that it has to be below ~2% (at 95% confidence) of the critical density, even when forced to play a role for z < 50 only. We then move to general parameterizations of the DE or MG perturbations that encompass both effective field theories and the phenomenology of gravitational potentials in MG models. Lastly, we test a range of specific models, such as k-essence, f(R) theories, and coupled DE. In addition to the latest Planck data, for our main analyses, we use background constraints from baryonic acoustic oscillations, type-Ia supernovae, and local measurements of the Hubble constant. We further show the impact of measurements of the cosmological perturbations, such as redshift-space distortions and weak gravitational lensing. These additional probes are important tools for testing MG models and for breaking degeneracies that are still present in the combination of Planck and background data sets. All results that include only background parameterizations (expansion of the equation of state, early DE, general potentials in minimally-coupled scalar fields or principal component analysis) are in agreement with ΛCDM. When testing models that also change perturbations (even when the background is fixed to ΛCDM), some tensions appear in a few scenarios: the maximum one found is ~2σ for Planck TT+lowP when parameterizing observables related to the gravitational potentials with a chosen time dependence; the tension increases to, at most, 3σ when external data sets are included. It however disappears when including CMB lensing.

816 citations

Journal ArticleDOI
TL;DR: An overview of techniques based on dynamic analysis that are used to analyze potentially malicious samples and analysis programs that employ these techniques to assist human analysts in assessing whether a given sample deserves closer manual inspection due to its unknown malicious behavior is provided.
Abstract: Anti-virus vendors are confronted with a multitude of potentially malicious samples today. Receiving thousands of new samples every day is not uncommon. The signatures that detect confirmed malicious threats are mainly still created manually, so it is important to discriminate between samples that pose a new unknown threat and those that are mere variants of known malware.This survey article provides an overview of techniques based on dynamic analysis that are used to analyze potentially malicious samples. It also covers analysis programs that leverage these It also covers analysis programs that employ these techniques to assist human analysts in assessing, in a timely and appropriate manner, whether a given sample deserves closer manual inspection due to its unknown malicious behavior.

815 citations


Authors

Showing all 30652 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Yi Chen2174342293080
Simon D. M. White189795231645
George Efstathiou187637156228
Peidong Yang183562144351
David R. Williams1782034138789
Alan J. Heeger171913147492
Richard H. Friend1691182140032
Jiawei Han1681233143427
Gang Chen1673372149819
Alexander S. Szalay166936145745
Omar M. Yaghi165459163918
Carlos S. Frenk165799140345
Yang Yang1642704144071
Carlos Bustamante161770106053
Network Information
Related Institutions (5)
University of Maryland, College Park
155.9K papers, 7.2M citations

96% related

Princeton University
146.7K papers, 9.1M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

95% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

95% related

University of California, Berkeley
265.6K papers, 16.8M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023150
2022528
20213,351
20203,653
20193,516