scispace - formally typeset
Search or ask a question
Institution

University of California, Santa Barbara

EducationSanta Barbara, California, United States
About: University of California, Santa Barbara is a education organization based out in Santa Barbara, California, United States. It is known for research contribution in the topics: Population & Galaxy. The organization has 30281 authors who have published 80852 publications receiving 4626827 citations. The organization is also known as: UC Santa Barbara & UCSB.
Topics: Population, Galaxy, Laser, Quantum well, Quantum dot


Papers
More filters
Journal ArticleDOI
TL;DR: The need for sound ecological science has escalated alongside the rise of the information age and "big data" across all sectors of society as discussed by the authors, which presents unprecedented opportunities for advancing science and inform- ing resource management through dataintensive approaches.
Abstract: The need for sound ecological science has escalated alongside the rise of the information age and “big data” across all sectors of society. Big data generally refer to massive volumes of data not readily handled by the usual data tools and practices and present unprecedented opportunities for advancing science and inform- ing resource management through data-intensive approaches. The era of big data need not be propelled only by “big science” – the term used to describe large-scale efforts that have had mixed success in the individual-driven culture of ecology. Collectively, ecologists already have big data to bolster the scientific effort – a large volume of distributed, high-value information – but many simply fail to contribute. We encourage ecologists to join the larger scientific community in global initiatives to address major scientific and societal problems by bringing their distributed data to the table and harnessing its collective power. The scientists who contribute such information will be at the forefront of socially relevant science – but will they be ecologists?

691 citations

Journal ArticleDOI
08 Mar 2013-Science
TL;DR: The past decade has seen remarkable progress in isolating and controlling quantum coherence using charges and spins in semiconductors, and electron spin coherence times now exceed several seconds, a nine-fold increase in coherence compared with the first semiconductor qubits.
Abstract: The past decade has seen remarkable progress in isolating and controlling quantum coherence using charges and spins in semiconductors. Quantum control has been established at room temperature, and electron spin coherence times now exceed several seconds, a nine–order-of-magnitude increase in coherence compared with the first semiconductor qubits. These coherence times rival those traditionally found only in atomic systems, ushering in a new era of ultracoherent spintronics. We review recent advances in quantum measurements, coherent control, and the generation of entangled states and describe some of the challenges that remain for processing quantum information with spins in semiconductors.

691 citations

Journal ArticleDOI
TL;DR: For instance, this paper found that small-scale spatial abilities predicted performance on the environmental-learning tasks, but were more predictive of learning from media than from direct experience, while large-scale abilities at different scales of space are partially but not totally dissociated.

690 citations

Journal ArticleDOI
25 Mar 1994-Science
TL;DR: Here, studies are presented of molecular order and organization in thin films of fatty acid salts, the prototypical system of Katharine Blodgett, which presents both a challenge and an opportunity for future molecular design of organic thin-film devices.
Abstract: The controlled transfer of organized monolayers of amphiphilic molecules from the airwater interface to a solid substrate was the first molecular-scale technology for the creation of new materials. However, the potential benefits of the technology envisioned by Langmuir and Blodgett in the 1930s have yet to be fully realized. Problems of reproducibility and defects and the lack of basic understanding of the packing of complex molecules in thin films have continued to thwart practical applications of Langmuir-Blodgett films and devices made from such films. However, modern high-resolution x-ray diffraction and scanning probe microscopy have proven to be ideal tools to resolve many of the basic questions involving thin organic films. Here, studies are presented of molecular order and organization in thin films of fatty acid salts, the prototypical system of Katharine Blodgett. Even these relatively simple systems present liquid, hexatic, and crystalline order; van der Waals and strained layer epitaxy on various substrates; wide variations in crystal symmetry and interfacial area with counterions; modulated superstructures; and coexisting lattice structures. The wide variety of possible structures presents both a challenge and an opportunity for future molecular design of organic thin-film devices.

690 citations

Journal ArticleDOI
TL;DR: In this article, the authors formulated a correspondence principle, which states that when the size of the horizon of a black hole decays below a given size of a string, the typical black hole state becomes a typical state of strings and D-branes with the same charges.
Abstract: For most black holes in string theory, the Schwarzschild radius in string units decreases as the string coupling is reduced. We formulate a correspondence principle, which states that (i) when the size of the horizon drops below the size of a string, the typical black hole state becomes a typical state of strings and D-branes with the same charges, and (ii) the mass does not change abruptly during the transition. This provides a statistical interpretation of black hole entropy. This approach does not yield the numerical coefficient, but gives the correct dependence on mass and charge in a wide range of cases, including neutral black holes. {copyright} {ital 1997} {ital The American Physical Society}

689 citations


Authors

Showing all 30652 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Yi Chen2174342293080
Simon D. M. White189795231645
George Efstathiou187637156228
Peidong Yang183562144351
David R. Williams1782034138789
Alan J. Heeger171913147492
Richard H. Friend1691182140032
Jiawei Han1681233143427
Gang Chen1673372149819
Alexander S. Szalay166936145745
Omar M. Yaghi165459163918
Carlos S. Frenk165799140345
Yang Yang1642704144071
Carlos Bustamante161770106053
Network Information
Related Institutions (5)
University of Maryland, College Park
155.9K papers, 7.2M citations

96% related

Princeton University
146.7K papers, 9.1M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

95% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

95% related

University of California, Berkeley
265.6K papers, 16.8M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023150
2022528
20213,351
20203,653
20193,516