scispace - formally typeset
Search or ask a question
Institution

University of California, Santa Barbara

EducationSanta Barbara, California, United States
About: University of California, Santa Barbara is a education organization based out in Santa Barbara, California, United States. It is known for research contribution in the topics: Population & Laser. The organization has 30281 authors who have published 80852 publications receiving 4626827 citations. The organization is also known as: UC Santa Barbara & UCSB.


Papers
More filters
Journal ArticleDOI
Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam  +2134 moreInstitutions (142)
TL;DR: The couplings of the Higgs boson are probed for deviations in magnitude from the standard model predictions in multiple ways, including searches for invisible and undetected decays, and no significant deviations are found.
Abstract: Properties of the Higgs boson with mass near 125 GeV are measured in proton-proton collisions with the CMS experiment at the LHC. Comprehensive sets of production and decay measurements are combined. The decay channels include gamma gamma, ZZ, WW, tau tau, bb, and mu mu pairs. The data samples were collected in 2011 and 2012 and correspond to integrated luminosities of up to 5.1 inverse femtobarns at 7 TeV and up to 19.7 inverse femtobarns at 8 TeV. From the high-resolution gamma gamma and ZZ channels, the mass of the Higgs boson is determined to be 125.02 +0.26 -0.27 (stat) +0.14 -0.15 (syst) GeV. For this mass value, the event yields obtained in the different analyses tagging specific decay channels and production mechanisms are consistent with those expected for the standard model Higgs boson. The combined best-fit signal relative to the standard model expectation is 1.00 +/- 0.09 (stat) +0.08 -0.07 (theo) +/- 0.07 (syst) at the measured mass. The couplings of the Higgs boson are probed for deviations in magnitude from the standard model predictions in multiple ways, including searches for invisible and undetected decays. No significant deviations are found.

677 citations

Journal ArticleDOI
TL;DR: A new framework for removing impulse noise from images is presented in which the nature of the filtering operation is conditioned on a state variable defined as the output of a classifier that operates on the differences between the input pixel and the remaining rank-ordered pixels in a sliding window.
Abstract: A new framework for removing impulse noise from images is presented in which the nature of the filtering operation is conditioned on a state variable defined as the output of a classifier that operates on the differences between the input pixel and the remaining rank-ordered pixels in a sliding window. As part of this framework, several algorithms are examined, each of which is applicable to fixed and random-valued impulse noise models. First, a simple two-state approach is described in which the algorithm switches between the output of an identity filter and a rank-ordered mean (ROM) filter. The technique achieves an excellent tradeoff between noise suppression and detail preservation with little increase in computational complexity over the simple median filter. For a small additional cost in memory, this simple strategy is easily generalized into a multistate approach using weighted combinations of the identity and ROM filter in which the weighting coefficients can be optimized using image training data. Extensive simulations indicate that these methods perform significantly better in terms of noise suppression and detail preservation than a number of existing nonlinear techniques with as much as 40% impulse noise corruption. Moreover, the method can effectively restore images corrupted with Gaussian noise and mixed Gaussian and impulse noise. Finally, the method is shown to be extremely robust with respect to the training data and the percentage of impulse noise.

676 citations

Journal ArticleDOI
TL;DR: It is concluded that distinct miRNAs play a functional role in the determination of neural fates in ES cell differentiation, and evidence that signal transducer and activator of transcription (STAT) 3, a member of the STAT family pathway, is involved in the function of these mi RNAs is provided.
Abstract: MicroRNAs (miRNAs) are recently discovered small non-coding transcripts with a broad spectrum of functions described mostly in invertebrates. As post-transcriptional regulators of gene expression, miRNAs trigger target mRNA degradation or translational repression. Although hundreds of miRNAs have been cloned from a variety of mammalian tissues and cells and multiple mRNA targets have been predicted, little is known about their functions. So far, a role of miRNA has only been described in hematopoietic, adipocytic, and muscle differentiation; regulation of insulin secretion; and potentially regulation of cancer growth. Here, we describe miRNA expression profiling in mouse embryonic stem (ES) cell– derived neurogenesis in vitro and show that a number of miRNAs are simultaneously co-induced during differentiation of neural progenitor cells to neurons and astrocytes. There was a clear correlation between miRNA expression profiles in ES cell– derived neurogenesis in vitro and in embryonal neurogenesis in vivo. Using both gain-of-function and loss-of-function approaches, we demonstrate that brain-specific miR-124a and miR-9 molecules affect neural lineage differentiation in the ES cell– derived cultures. In addition, we provide evidence that signal transducer and activator of transcription (STAT) 3, a member of the STAT family pathway, is involved in the function of these miRNAs. We conclude that distinct miRNAs play a functional role in the determination of neural fates in ES cell differentiation.

675 citations

Proceedings ArticleDOI
09 Nov 2009
TL;DR: This paper reports on efforts to take control of the Torpig botnet and study its operations for a period of ten days, which provides a new understanding of the type and amount of personal information that is stolen by botnets.
Abstract: Botnets, networks of malware-infected machines that are controlled by an adversary, are the root cause of a large number of security problems on the Internet. A particularly sophisticated and insidious type of bot is Torpig, a malware program that is designed to harvest sensitive information (such as bank account and credit card data) from its victims. In this paper, we report on our efforts to take control of the Torpig botnet and study its operations for a period of ten days. During this time, we observed more than 180 thousand infections and recorded almost 70 GB of data that the bots collected. While botnets have been "hijacked" and studied previously, the Torpig botnet exhibits certain properties that make the analysis of the data particularly interesting. First, it is possible (with reasonable accuracy) to identify unique bot infections and relate that number to the more than 1.2 million IP addresses that contacted our command and control server. Second, the Torpig botnet is large, targets a variety of applications, and gathers a rich and diverse set of data from the infected victims. This data provides a new understanding of the type and amount of personal information that is stolen by botnets.

675 citations

Journal ArticleDOI
02 Jun 1995-Science
TL;DR: Gemini surfactants, with two quaternary ammonium head groups separated by a methylene chain of variable length, can be used to control organic charge sitting relative to the bivariable hydrophobic tail configurations, leading to a mesophase (SBA-2) that has three-dimensional hexagonal (P63/mmc) symmetry, regular supercages that can be dimensionally tailored, and a large inner surface area.
Abstract: At low temperatures, liquid crystal-like arrays made up of inorganic-cluster and organic molecular units readily undergo reversible lyotropic transformations. Gemini surfactants, with two quaternary ammonium head groups separated by a methylene chain of variable length and with each head group attached to a hydrophobic tail, can be used to control organic charge sitting relative to the bivariable hydrophobic tail configurations. This approach has led to the synthesis of a mesophase (SBA-2) that has three-dimensional hexagonal (P6(3)/mmc) symmetry, regular supercages that can be dimensionally tailored, and a large inner surface area. This mesostructure analog of a zeolite cage structure does not appear to have a lyotropic surfactant or lipid liquid crystal mesophase counterpart. Through the modification of gemini charge separation and each of the two organic tails, these syntheses can be used to optimize templating effects, including the synthesis of MCM-48 at room temperature.

674 citations


Authors

Showing all 30652 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Yi Chen2174342293080
Simon D. M. White189795231645
George Efstathiou187637156228
Peidong Yang183562144351
David R. Williams1782034138789
Alan J. Heeger171913147492
Richard H. Friend1691182140032
Jiawei Han1681233143427
Gang Chen1673372149819
Alexander S. Szalay166936145745
Omar M. Yaghi165459163918
Carlos S. Frenk165799140345
Yang Yang1642704144071
Carlos Bustamante161770106053
Network Information
Related Institutions (5)
University of Maryland, College Park
155.9K papers, 7.2M citations

96% related

Princeton University
146.7K papers, 9.1M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

95% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

95% related

University of California, Berkeley
265.6K papers, 16.8M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023150
2022528
20213,352
20203,653
20193,516