scispace - formally typeset
Search or ask a question
Institution

University of California, Santa Barbara

EducationSanta Barbara, California, United States
About: University of California, Santa Barbara is a education organization based out in Santa Barbara, California, United States. It is known for research contribution in the topics: Population & Laser. The organization has 30281 authors who have published 80852 publications receiving 4626827 citations. The organization is also known as: UC Santa Barbara & UCSB.


Papers
More filters
Journal ArticleDOI
TL;DR: A roadmap of the most widely used and ecologically relevant approaches for analysis through a series of mission statements is provided, distinguishing two types of β diversity: directional turnover along a gradient vs. non-directional variation.
Abstract: A recent increase in studies of β diversity has yielded a confusing array of concepts, measures and methods. Here, we provide a roadmap of the most widely used and ecologically relevant approaches for analysis through a series of mission statements. We distinguish two types of β diversity: directional turnover along a gradient vs. non-directional variation. Different measures emphasize different properties of ecological data. Such properties include the degree of emphasis on presence/absence vs. relative abundance information and the inclusion vs. exclusion of joint absences. Judicious use of multiple measures in concert can uncover the underlying nature of patterns in β diversity for a given dataset. A case study of Indonesian coral assemblages shows the utility of a multi-faceted approach. We advocate careful consideration of relevant questions, matched by appropriate analyses. The rigorous application of null models will also help to reveal potential processes driving observed patterns in β diversity.

1,995 citations

Journal ArticleDOI
TL;DR: In this paper, a scheme to utilize photons for ideal quantum transmission between atoms located at spatially separated nodes of a quantum network was proposed, which employs special laser pulses that excite an atom inside an optical cavity at the sending node so that its state is mapped into a time-symmetric photon wave packet that will enter a cavity at receiving node and be absorbed by an atom there with unit probability.
Abstract: We propose a scheme to utilize photons for ideal quantum transmission between atoms located at spatially separated nodes of a quantum network. The transmission protocol employs special laser pulses that excite an atom inside an optical cavity at the sending node so that its state is mapped into a time-symmetric photon wave packet that will enter a cavity at the receiving node and be absorbed by an atom there with unit probability. Implementation of our scheme would enable reliable transfer or sharing of entanglement among spatially distant atoms.

1,992 citations

Proceedings ArticleDOI
18 May 2009
TL;DR: This work presents Eucalyptus -- an open-source software framework for cloud computing that implements what is commonly referred to as Infrastructure as a Service (IaaS); systems that give users the ability to run and control entire virtual machine instances deployed across a variety physical resources.
Abstract: Cloud computing systems fundamentally provide access to large pools of data and computational resources through a variety of interfaces similar in spirit to existing grid and HPC resource management and programming systems. These types of systems offer a new programming target for scalable application developers and have gained popularity over the past few years. However, most cloud computing systems in operation today are proprietary, rely upon infrastructure that is invisible to the research community, or are not explicitly designed to be instrumented and modified by systems researchers. In this work, we present Eucalyptus -- an open-source software framework for cloud computing that implements what is commonly referred to as Infrastructure as a Service (IaaS); systems that give users the ability to run and control entire virtual machine instances deployed across a variety physical resources. We outline the basic principles of the Eucalyptus design, detail important operational aspects of the system, and discuss architectural trade-offs that we have made in order to allow Eucalyptus to be portable, modular and simple to use on infrastructure commonly found within academic settings. Finally, we provide evidence that Eucalyptus enables users familiar with existing Grid and HPC systems to explore new cloud computing functionality while maintaining access to existing, familiar application development software and Grid middle-ware.

1,962 citations

Journal ArticleDOI
D. S. Akerib1, Henrique Araujo2, X. Bai3, A. J. Bailey2, J. Balajthy4, S. Bedikian5, Ethan Bernard5, A. Bernstein6, Alexander Bolozdynya1, A. W. Bradley1, D. Byram7, Sidney Cahn5, M. C. Carmona-Benitez8, C. Chan9, J.J. Chapman9, A. A. Chiller7, C. Chiller7, K. Clark1, T. Coffey1, A. Currie2, A. Curioni5, Steven Dazeley6, L. de Viveiros10, A. Dobi4, J. E. Y. Dobson11, E. M. Dragowsky1, E. Druszkiewicz12, B. N. Edwards5, C. H. Faham13, S. Fiorucci9, C. E. Flores14, R. J. Gaitskell9, V. M. Gehman13, C. Ghag15, K.R. Gibson1, Murdock Gilchriese13, C. R. Hall4, M. Hanhardt3, S. A. Hertel5, M. Horn5, D. Q. Huang9, M. Ihm16, R. G. Jacobsen16, L. Kastens5, K. Kazkaz6, R. Knoche4, S. Kyre8, R. L. Lander14, N. A. Larsen5, C. Lee1, David Leonard4, K. T. Lesko13, A. Lindote10, M.I. Lopes10, A. Lyashenko5, D.C. Malling9, R. L. Mannino17, Daniel McKinsey5, Dongming Mei7, J. Mock14, M. Moongweluwan12, J. A. Morad14, M. Morii18, A. St. J. Murphy11, C. Nehrkorn8, H. N. Nelson8, F. Neves10, James Nikkel5, R. A. Ott14, M. Pangilinan9, P. D. Parker5, E. K. Pease5, K. Pech1, P. Phelps1, L. Reichhart15, T. A. Shutt1, C. Silva10, W. Skulski12, C. Sofka17, V. N. Solovov10, P. Sorensen6, T.M. Stiegler17, K. O'Sullivan5, T. J. Sumner2, Robert Svoboda14, M. Sweany14, Matthew Szydagis14, D. J. Taylor, B. P. Tennyson5, D. R. Tiedt3, Mani Tripathi14, S. Uvarov14, J.R. Verbus9, N. Walsh14, R. C. Webb17, J. T. White17, D. White8, M. S. Witherell8, M. Wlasenko18, F.L.H. Wolfs12, M. Woods14, Chao Zhang7 
TL;DR: The first WIMP search data set is reported, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data, finding that the LUX data are in disagreement with low-mass W IMP signal interpretations of the results from several recent direct detection experiments.
Abstract: The Large Underground Xenon (LUX) experiment is a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota). The LUX cryostat was filled for the first time in the underground laboratory in February 2013. We report results of the first WIMP search data set, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data with a fiducial volume of 118 kg. A profile-likelihood analysis technique shows our data to be consistent with the background-only hypothesis, allowing 90% confidence limits to be set on spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6 × 10(-46) cm(2) at a WIMP mass of 33 GeV/c(2). We find that the LUX data are in disagreement with low-mass WIMP signal interpretations of the results from several recent direct detection experiments.

1,962 citations

Journal ArticleDOI
07 Dec 2006-Nature
TL;DR: Global ocean NPP changes detected from space over the past decade are described, dominated by an initial increase in NPP of 1,930 teragrams of carbon a year, followed by a prolonged decrease averaging 190 Tg C yr-1.
Abstract: Contributing roughly half of the biosphere's net primary production (NPP), photosynthesis by oceanic phytoplankton is a vital link in the cycling of carbon between living and inorganic stocks. Each day, more than a hundred million tons of carbon in the form of CO2 are fixed into organic material by these ubiquitous, microscopic plants of the upper ocean, and each day a similar amount of organic carbon is transferred into marine ecosystems by sinking and grazing. The distribution of phytoplankton biomass and NPP is defined by the availability of light and nutrients (nitrogen, phosphate, iron). These growth-limiting factors are in turn regulated by physical processes of ocean circulation, mixed-layer dynamics, upwelling, atmospheric dust deposition, and the solar cycle. Satellite measurements of ocean colour provide a means of quantifying ocean productivity on a global scale and linking its variability to environmental factors. Here we describe global ocean NPP changes detected from space over the past decade. The period is dominated by an initial increase in NPP of 1,930 teragrams of carbon a year (Tg C yr(-1)), followed by a prolonged decrease averaging 190 Tg C yr(-1). These trends are driven by changes occurring in the expansive stratified low-latitude oceans and are tightly coupled to coincident climate variability. This link between the physical environment and ocean biology functions through changes in upper-ocean temperature and stratification, which influence the availability of nutrients for phytoplankton growth. The observed reductions in ocean productivity during the recent post-1999 warming period provide insight on how future climate change can alter marine food webs.

1,954 citations


Authors

Showing all 30652 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Yi Chen2174342293080
Simon D. M. White189795231645
George Efstathiou187637156228
Peidong Yang183562144351
David R. Williams1782034138789
Alan J. Heeger171913147492
Richard H. Friend1691182140032
Jiawei Han1681233143427
Gang Chen1673372149819
Alexander S. Szalay166936145745
Omar M. Yaghi165459163918
Carlos S. Frenk165799140345
Yang Yang1642704144071
Carlos Bustamante161770106053
Network Information
Related Institutions (5)
University of Maryland, College Park
155.9K papers, 7.2M citations

96% related

Princeton University
146.7K papers, 9.1M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

95% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

95% related

University of California, Berkeley
265.6K papers, 16.8M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023150
2022528
20213,352
20203,653
20193,516