scispace - formally typeset
Search or ask a question
Institution

University of California, Santa Barbara

EducationSanta Barbara, California, United States
About: University of California, Santa Barbara is a education organization based out in Santa Barbara, California, United States. It is known for research contribution in the topics: Population & Galaxy. The organization has 30281 authors who have published 80852 publications receiving 4626827 citations. The organization is also known as: UC Santa Barbara & UCSB.
Topics: Population, Galaxy, Laser, Quantum well, Quantum dot


Papers
More filters
Journal ArticleDOI
15 Aug 2003-Science
TL;DR: Records are compiled, extending back thousands of years, of the status and trends of seven major guilds of carnivores, herbivores, and architectural species from 14 regions that indicate reefs will not survive without immediate protection from human exploitation over large spatial scales.
Abstract: Degradation of coral reef ecosystems began centuries ago, but there is no global summary of the magnitude of change. We compiled records, extending back thousands of years, of the status and trends of seven major guilds of carnivores, herbivores, and architectural species from 14 regions. Large animals declined before small animals and architectural species, and Atlantic reefs declined before reefs in the Red Sea and Australia, but the trajectories of decline were markedly similar worldwide. All reefs were substantially degraded long before outbreaks of coral disease and bleaching. Regardless of these new threats, reefs will not survive without immediate protection from human exploitation over large spatial scales.

1,836 citations

Journal ArticleDOI
TL;DR: Six general mechanisms by which trait variation changes the outcome of ecological interactions are identified and synthesize recent theory and identify several direct effects of trait variation per se and indirect effects arising from the role of genetic variation in trait evolution.
Abstract: Natural populations consist of phenotypically diverse individuals that exhibit variation in their demographic parameters and intra- and inter-specific interactions. Recent experimental work indicates that such variation can have significant ecological effects. However, ecological models typically disregard this variation and focus instead on trait means and total population density. Under what situations is this simplification appropriate? Why might intraspecific variation alter ecological dynamics? In this review we synthesize recent theory and identify six general mechanisms by which trait variation changes the outcome of ecological interactions. These mechanisms include several direct effects of trait variation per se and indirect effects arising from the role of genetic variation in trait evolution.

1,835 citations

Journal ArticleDOI
01 Jun 2007-Ecology
TL;DR: It is suggested that more effectively integrating microbial ecology into ecosystem ecology will require a more complete integration of microbial physiological ecology, population biology, and process ecology.
Abstract: Microorganisms have a variety of evolutionary adaptations and physiological acclimation mechanisms that allow them to survive and remain active in the face of environmental stress. Physiological responses to stress have costs at the organismal level that can result in altered ecosystem-level C, energy, and nutrient flows. These large-scale impacts result from direct effects on active microbes' physiology and by controlling the composition of the active microbial community. We first consider some general aspects of how microbes experience environmental stresses and how they respond to them. We then discuss the impacts of two important ecosystem-level stressors, drought and freezing, on microbial physiology and community composition. Even when microbial community response to stress is limited, the physiological costs imposed on soil microbes are large enough that they may cause large shifts in the allocation and fate of C and N. For example, for microbes to synthesize the osmolytes they need to survive a single drought episode they may consume up to 5% of total annual net primary production in grassland ecosystems, while acclimating to freezing conditions switches Arctic tundra soils from immobilizing N during the growing season to mineralizing it during the winter. We suggest that more effectively integrating microbial ecology into ecosystem ecology will require a more complete integration of microbial physiological ecology, population biology, and process ecology.

1,828 citations

Journal ArticleDOI
Daniel Conroy-Beam1, David M. Buss2, Kelly Asao2, Agnieszka Sorokowska3, Agnieszka Sorokowska4, Piotr Sorokowski4, Toivo Aavik5, Grace Akello6, Mohammad Madallh Alhabahba7, Charlotte Alm8, Naumana Amjad9, Afifa Anjum9, Chiemezie S. Atama10, Derya Atamtürk Duyar11, Richard Ayebare, Carlota Batres12, Mons Bendixen13, Aicha Bensafia14, Boris Bizumic15, Mahmoud Boussena14, Marina Butovskaya16, Marina Butovskaya17, Seda Can18, Katarzyna Cantarero19, Antonin Carrier20, Hakan Cetinkaya21, Ilona Croy3, Rosa María Cueto22, Marcin Czub4, Daria Dronova17, Seda Dural18, İzzet Duyar11, Berna Ertuğrul23, Agustín Espinosa22, Ignacio Estevan24, Carla Sofia Esteves25, Luxi Fang26, Tomasz Frackowiak4, Jorge Contreras Garduño27, Karina Ugalde González, Farida Guemaz, Petra Gyuris28, Mária Halamová29, Iskra Herak20, Marina Horvat30, Ivana Hromatko31, Chin Ming Hui26, Jas Laile Suzana Binti Jaafar32, Feng Jiang33, Konstantinos Kafetsios34, Tina Kavčič35, Leif Edward Ottesen Kennair13, Nicolas Kervyn20, Truong Thi Khanh Ha19, Imran Ahmed Khilji36, Nils C. Köbis37, Hoang Moc Lan19, András Láng28, Georgina R. Lennard15, Ernesto León22, Torun Lindholm8, Trinh Thi Linh19, Giulia Lopez38, Nguyen Van Luot19, Alvaro Mailhos24, Zoi Manesi39, Rocio Martinez40, Sarah L. McKerchar15, Norbert Meskó28, Girishwar Misra41, Conal Monaghan15, Emanuel C. Mora42, Alba Moya-Garófano40, Bojan Musil30, Jean Carlos Natividade43, Agnieszka Niemczyk4, George Nizharadze, Elisabeth Oberzaucher44, Anna Oleszkiewicz4, Anna Oleszkiewicz3, Mohd Sofian Omar-Fauzee45, Ike E. Onyishi10, Barış Özener11, Ariela Francesca Pagani38, Vilmante Pakalniskiene46, Miriam Parise38, Farid Pazhoohi47, Annette Pisanski42, Katarzyna Pisanski4, Katarzyna Pisanski48, Edna Lúcia Tinoco Ponciano, Camelia Popa49, Pavol Prokop50, Pavol Prokop51, Muhammad Rizwan, Mario Sainz52, Svjetlana Salkičević31, Ruta Sargautyte46, Ivan Sarmány-Schuller53, Susanne Schmehl44, Shivantika Sharad41, Razi Sultan Siddiqui54, Franco Simonetti55, Stanislava Stoyanova56, Meri Tadinac31, Marco Antonio Correa Varella57, Christin-Melanie Vauclair25, Luis Diego Vega, Dwi Ajeng Widarini, Gyesook Yoo58, Marta Zaťková29, Maja Zupančič59 
University of California, Santa Barbara1, University of Texas at Austin2, Dresden University of Technology3, University of Wrocław4, University of Tartu5, Gulu University6, Middle East University7, Stockholm University8, University of the Punjab9, University of Nigeria, Nsukka10, Istanbul University11, Franklin & Marshall College12, Norwegian University of Science and Technology13, University of Algiers14, Australian National University15, Russian State University for the Humanities16, Russian Academy of Sciences17, İzmir University of Economics18, University of Social Sciences and Humanities19, Université catholique de Louvain20, Ankara University21, Pontifical Catholic University of Peru22, Cumhuriyet University23, University of the Republic24, ISCTE – University Institute of Lisbon25, The Chinese University of Hong Kong26, National Autonomous University of Mexico27, University of Pécs28, University of Constantine the Philosopher29, University of Maribor30, University of Zagreb31, University of Malaya32, Central University of Finance and Economics33, University of Crete34, University of Primorska35, Institute of Molecular and Cell Biology36, University of Amsterdam37, Catholic University of the Sacred Heart38, VU University Amsterdam39, University of Granada40, University of Delhi41, University of Havana42, Pontifical Catholic University of Rio de Janeiro43, University of Vienna44, Universiti Utara Malaysia45, Vilnius University46, University of British Columbia47, University of Sussex48, Romanian Academy49, Comenius University in Bratislava50, Slovak Academy of Sciences51, University of Monterrey52, SAS Institute53, DHA Suffa University54, Pontifical Catholic University of Chile55, South-West University "Neofit Rilski"56, University of São Paulo57, Kyung Hee University58, University of Ljubljana59
TL;DR: This work combines this large cross-cultural sample with agent-based models to compare eight hypothesized models of human mating markets and finds that this cross-culturally universal pattern of mate choice is most consistent with a Euclidean model of mate preference integration.
Abstract: Humans express a wide array of ideal mate preferences. Around the world, people desire romantic partners who are intelligent, healthy, kind, physically attractive, wealthy, and more. In order for these ideal preferences to guide the choice of actual romantic partners, human mating psychology must possess a means to integrate information across these many preference dimensions into summaries of the overall mate value of their potential mates. Here we explore the computational design of this mate preference integration process using a large sample of n = 14,487 people from 45 countries around the world. We combine this large cross-cultural sample with agent-based models to compare eight hypothesized models of human mating markets. Across cultures, people higher in mate value appear to experience greater power of choice on the mating market in that they set higher ideal standards, better fulfill their preferences in choice, and pair with higher mate value partners. Furthermore, we find that this cross-culturally universal pattern of mate choice is most consistent with a Euclidean model of mate preference integration.

1,827 citations

Journal ArticleDOI
TL;DR: It is reported that particle shape, not size, plays a dominant role in phagocytosis, and particle size primarily impacts the completion of phagocytes in cases where particle volume exceeds the cell volume.
Abstract: Phagocytosis is a principal component of the body’s innate immunity in which macrophages internalize targets in an actin-dependent manner. Targets vary widely in shape and size and include particles such as pathogens and senescent cells. Despite considerable progress in understanding this complicated process, the role of target geometry in phagocytosis has remained elusive. Previous studies on phagocytosis have been performed using spherical targets, thereby overlooking the role of particle shape. Using polystyrene particles of various sizes and shapes, we studied phagocytosis by alveolar macrophages. We report a surprising finding that particle shape, not size, plays a dominant role in phagocytosis. All shapes were capable of initiating phagocytosis in at least one orientation. However, the local particle shape, measured by tangent angles, at the point of initial contact dictates whether macrophages initiate phagocytosis or simply spread on particles. The local shape determines the complexity of the actin structure that must be created to initiate phagocytosis and allow the membrane to move over the particle. Failure to create the required actin structure results in simple spreading and not internalization. Particle size primarily impacts the completion of phagocytosis in cases where particle volume exceeds the cell volume.

1,820 citations


Authors

Showing all 30652 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Yi Chen2174342293080
Simon D. M. White189795231645
George Efstathiou187637156228
Peidong Yang183562144351
David R. Williams1782034138789
Alan J. Heeger171913147492
Richard H. Friend1691182140032
Jiawei Han1681233143427
Gang Chen1673372149819
Alexander S. Szalay166936145745
Omar M. Yaghi165459163918
Carlos S. Frenk165799140345
Yang Yang1642704144071
Carlos Bustamante161770106053
Network Information
Related Institutions (5)
University of Maryland, College Park
155.9K papers, 7.2M citations

96% related

Princeton University
146.7K papers, 9.1M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

95% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

95% related

University of California, Berkeley
265.6K papers, 16.8M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023150
2022528
20213,351
20203,653
20193,516