scispace - formally typeset
Search or ask a question
Institution

University of California, Santa Barbara

EducationSanta Barbara, California, United States
About: University of California, Santa Barbara is a education organization based out in Santa Barbara, California, United States. It is known for research contribution in the topics: Population & Galaxy. The organization has 30281 authors who have published 80852 publications receiving 4626827 citations. The organization is also known as: UC Santa Barbara & UCSB.
Topics: Population, Galaxy, Laser, Quantum well, Quantum dot


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors apply the plasmon hybridization method to nanoparticle dimers, providing a simple and intuitive description of how the energy and excitation cross sections of dimer plasmons depend on nanoparticle separation.
Abstract: We apply the recently developed plasmon hybridization method to nanoparticle dimers, providing a simple and intuitive description of how the energy and excitation cross sections of dimer plasmons depend on nanoparticle separation. We show that the dimer plasmons can be viewed as bonding and antibonding combinations, i.e., hybridization of the individual nanoparticle plasmons. The calculated plasmon energies are compared with results from FDTD simulations.

1,577 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +5117 moreInstitutions (314)
TL;DR: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4ℓ decay channels.
Abstract: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4l decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is mH=125.09±0.21 (stat)±0.11 (syst) GeV.

1,567 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the achievements and the status of integrability in the context of the AdS/CFT correspondence as of the year 2010.
Abstract: This is the introductory chapter of a review collection on integrability in the context of the AdS/CFT correspondence. In the collection we present an overview of the achievements and the status of this subject as of the year 2010.

1,564 citations

Journal ArticleDOI
TL;DR: This article used new data sources, enhanced spatial resolution, and new analytical approaches to provide new estimates of the global abundance of surface-water bodies and showed that the global extent of natural lakes is twice as large as previously known.
Abstract: One of the major impediments to the integration of lentic ecosystems into global environmental analyses has been fragmentary data on the extent and size distribution of lakes, ponds, and impoundments. We use new data sources, enhanced spatial resolution, and new analytical approaches to provide new estimates of the global abundance of surface-water bodies. A global model based on the Pareto distribution shows that the global extent of natural lakes is twice as large as previously known (304 million lakes; 4.2 million km2 in area) and is dominated in area by millions of water bodies smaller than 1 km2. Similar analyses of impoundments based on inventories of large, engineered dams show that impounded waters cover approximately 0.26 million km 2 . However, construction of low-tech farm impoundments is estimated to be between 0.1% and 6% of farm area worldwide, dependent upon precipitation, and represents .77,000 km 2 globally, at present. Overall, about 4.6 million km2 of the earth’s continental ‘‘land’’ surface (.3%) is covered by water. These analyses underscore the importance of explicitly considering lakes, ponds, and impoundments, especially small ones, in global analyses of rates and processes.

1,560 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a simple analytic model for the gravitational clustering of dark matter halos to understand how their spatial distribution is biased relative to that of the mass, and showed that this bias function is sufficient to calculate the cross-correlation between dark haloes and mass.
Abstract: We develop a simple analytic model for the gravitational clustering of dark matter haloes to understand how their spatial distribution is biased relative to that of the mass. The statistical distribution of dark haloes within the initial density field (assumed Gaussian) is determined by an extension of the Press-Schechter formalism. Modifications of this distribution caused by gravitationally induced motions are treated using a spherical collapse approximation. We test this model against results from a variety of N-body simulations, and find that it gives an accurate description of a bias function. This bias function is sufficient to calculate the cross-correlation between dark haloes and mass, and again we find excellent agreement between simulation results and analytic predictions. Because haloes are spatially exclusive, the variance in the count of objects within spheres of fixed radius and overdensity is significantly smaller than the Poisson value. This seriously complicates any analytic calculation of the autocorrelation function of dark halos. Our simulation results show that this autocorrelation function is proportional to that of the mass over a wide range in $R$, even including scales where both functions are significantly greater than unity. The constant of proportionality is very close to that predicted on large scales by the analytic model. This result permits an entirely analytic estimate of the autocorrelation function of dark haloes. We use our model to study how the distribution of galaxies may be biased with respect to that of the mass. In conjunction with other data these techniques should make it possible to measure the amplitude of cosmic mass fluctuations and the density of the Universe.

1,555 citations


Authors

Showing all 30652 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Yi Chen2174342293080
Simon D. M. White189795231645
George Efstathiou187637156228
Peidong Yang183562144351
David R. Williams1782034138789
Alan J. Heeger171913147492
Richard H. Friend1691182140032
Jiawei Han1681233143427
Gang Chen1673372149819
Alexander S. Szalay166936145745
Omar M. Yaghi165459163918
Carlos S. Frenk165799140345
Yang Yang1642704144071
Carlos Bustamante161770106053
Network Information
Related Institutions (5)
University of Maryland, College Park
155.9K papers, 7.2M citations

96% related

Princeton University
146.7K papers, 9.1M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

95% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

95% related

University of California, Berkeley
265.6K papers, 16.8M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023150
2022528
20213,351
20203,653
20193,516