scispace - formally typeset
Search or ask a question
Institution

University of California, Santa Barbara

EducationSanta Barbara, California, United States
About: University of California, Santa Barbara is a education organization based out in Santa Barbara, California, United States. It is known for research contribution in the topics: Population & Galaxy. The organization has 30281 authors who have published 80852 publications receiving 4626827 citations. The organization is also known as: UC Santa Barbara & UCSB.
Topics: Population, Galaxy, Laser, Quantum well, Quantum dot


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the statistics of two-particle quantum mechanics are discussed, and how this works for two-and three-dimensional quantum mechanics is discussed in the context of (2+1)-and (3+3)-models.
Abstract: Composites formed from charged particles and vortices in (2+1)-dimensional models, or flux tubes in three-dimensional models, can have any (fractional) angular momentum. The statistics of these objects, like their spin, interpolates continuously between the usual boson and fermion cases. How this works for two-particle quantum mechanics is discussed here.

1,310 citations

Journal ArticleDOI
01 Jan 1997-Nature
TL;DR: In this article, the authors explore the relationship between soil mineralogy and organic carbon along two natural gradients (i.e., soil-age and climate) in volcanic soil environments.
Abstract: A large source of uncertainty in present understanding of the global carbon cycle is the distribution and dynamics of the soil organic carbon reservoir. Most of the organic carbon in soils is degraded to inorganic forms slowly, on timescales from centuries to millennia1. Soil minerals are known to play a stabilizing role, but how spatial and temporal variation in soil mineralogy controls the quantity and turnover of long-residence-time organic carbon is not well known2. Here we use radiocarbon analyses to explore interactions between soil mineralogy and soil organic carbon along two natural gradients—of soil-age and of climate—in volcanic soil environments. During the first ∼150,000 years of soil development, the volcanic parent material weathered to metastable, non-crystalline minerals. Thereafter, the amount of non-crystalline minerals declined, and more stable crystalline minerals accumulated. Soil organic carbon content followed a similar trend, accumulating to a maximum after 150,000 years, and then decreasing by 50% over the next four million years. A positive relationship between non-crystalline minerals and organic carbon was also observed in soils through the climate gradient, indicating that the accumulation and subsequent loss of organic matter were largely driven by changes in the millennial scale cycling of mineral-stabilized carbon, rather than by changes in the amount of fast-cycling organic matter or in net primary productivity. Soil mineralogy is therefore important in determining the quantity of organic carbon stored in soil, its turnover time, and atmosphere–ecosystem carbon fluxes during long-term soil development; this conclusion should be generalizable at least to other humid environments.

1,308 citations

Journal ArticleDOI
TL;DR: Pd-functionalized nanostructures exhibited a dramatic improvement in sensitivity toward oxygen and hydrogen due to the enhanced catalytic dissociation of the molecular adsorbate on the Pd nanoparticle surfaces and the subsequent diffusion of the resultant atomic species to the oxide surface.
Abstract: The sensing ability of individual SnO2 nanowires and nanobelts configured as gas sensors was measured before and after functionalization with Pd catalyst particles. In situ deposition of Pd in the same reaction chamber in which the sensing measurements were carried out ensured that the observed modification in behavior was due to the Pd functionalization rather than the variation in properties from one nanowire to another. Changes in the conductance in the early stages of metal deposition (i.e., before metal percolation) indicated that the Pd nanoparticles on the nanowire surface created Schottky barrier-type junctions resulting in the formation of electron depletion regions within the nanowire, constricting the effective conduction channel and reducing the conductance. Pd-functionalized nanostructures exhibited a dramatic improvement in sensitivity toward oxygen and hydrogen due to the enhanced catalytic dissociation of the molecular adsorbate on the Pd nanoparticle surfaces and the subsequent diffusion ...

1,307 citations

Journal ArticleDOI
13 Nov 2020-Science
TL;DR: It is found that neuropilin-1 (NRP1), known to bind furin-cleaved substrates, significantly potentiates SARS-CoV-2 infectivity, an effect blocked by a monoclonal blocking antibody against NRP1.
Abstract: The causative agent of coronavirus disease 2019 (COVID-19) is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For many viruses, tissue tropism is determined by the availability of virus receptors and entry cofactors on the surface of host cells. In this study, we found that neuropilin-1 (NRP1), known to bind furin-cleaved substrates, significantly potentiates SARS-CoV-2 infectivity, an effect blocked by a monoclonal blocking antibody against NRP1. A SARS-CoV-2 mutant with an altered furin cleavage site did not depend on NRP1 for infectivity. Pathological analysis of olfactory epithelium obtained from human COVID-19 autopsies revealed that SARS-CoV-2 infected NRP1-positive cells facing the nasal cavity. Our data provide insight into SARS-CoV-2 cell infectivity and define a potential target for antiviral intervention.

1,304 citations

Journal ArticleDOI
TL;DR: This article found that multimedia learners can integrate words and pictures more easily when the words are presented auditorily rather than visually, which is consistent with a dual-processing model of working memory consisting of separate visual and auditory channels.
Abstract: Students viewed a computer-generated animation depicting the process of lightning formation (Experiment 1) or the operation of a car's braking system (Experiment 2). In each experiment, students received either concurrent narration describing the major steps (Group AN) or concurrent on-screen text involving the same words and presentation timing (Group AT). Across both experiments, students in Group AN outperformed students in Group AT in recalling the steps in the process on a retention test, in finding named elements in an illustration on a matching test, and in generating correct solutions to problems on a transfer test. Multimedia learners can integrate words and pictures more easily when the words are presented auditorily rather than visually. This split-attention effect is consistent with a dual-processing model of working memory consisting of separate visual and auditory channels.

1,303 citations


Authors

Showing all 30652 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Yi Chen2174342293080
Simon D. M. White189795231645
George Efstathiou187637156228
Peidong Yang183562144351
David R. Williams1782034138789
Alan J. Heeger171913147492
Richard H. Friend1691182140032
Jiawei Han1681233143427
Gang Chen1673372149819
Alexander S. Szalay166936145745
Omar M. Yaghi165459163918
Carlos S. Frenk165799140345
Yang Yang1642704144071
Carlos Bustamante161770106053
Network Information
Related Institutions (5)
University of Maryland, College Park
155.9K papers, 7.2M citations

96% related

Princeton University
146.7K papers, 9.1M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

95% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

95% related

University of California, Berkeley
265.6K papers, 16.8M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023150
2022528
20213,351
20203,653
20193,516