scispace - formally typeset
Search or ask a question
Institution

University of California, Santa Cruz

EducationSanta Cruz, California, United States
About: University of California, Santa Cruz is a education organization based out in Santa Cruz, California, United States. It is known for research contribution in the topics: Galaxy & Population. The organization has 15541 authors who have published 44120 publications receiving 2759983 citations. The organization is also known as: UCSC & UC, Santa Cruz.
Topics: Galaxy, Population, Star formation, Redshift, Planet


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a series of investigations into the stellar populations of local elliptical galaxies as determined from their integrated spectra was conducted to determine the star formation and chemical evolution histories of present-day galaxies.
Abstract: This paper commences a series of investigations into the stellar populations of local elliptical galaxies as determined from their integrated spectra. The goal of the series is to determine the star formation and chemical evolution histories of present-day elliptical galaxies. The primary galaxy sample analyzed is that of Gonzalez, which consists of 39 elliptical galaxies drawn primarily from the local field and nearby groups, plus the bulge of Messier 31. Single-burst stellar population (SSP)–equivalent ages, metallicities, and abundance ratios are derived from Hβ, Mg b, and Fe line strengths using an extension of the Worthey models that incorporates nonsolar line-strength "response functions" by Tripicco & Bell. These functions account for changes in the Lick/IDS indices caused by nonsolar abundance ratios, allowing us to correct the Worthey models for the enhancements of Mg and other α-like elements relative to the Fe-peak elements. SSP-equivalent ages of the Gonzalez elliptical galaxies are found to vary widely, 1.5 Gyr t 18 Gyr, while metallicities [Z/H] and enhancement ratios [E/Fe] are strongly peaked around [Z/H] = +0.26 and [E/Fe] = +0.20 (in an aperture of radius re/8). The enhancement ratios [E/Fe] are milder than previous estimates because of the application of nonsolar abundance corrections to both Mg b and Fe for the first time. While [E/Fe] is usually greater than zero, it is not the "E" elements that are actually enhanced but rather the Fe-peak elements that are depressed; this serves not only to weaken Fe but also to strengthen Mg b, accounting for the overall generally mild enhancements. Based on index strengths from the Lick/IDS galaxy library (Trager et al.), C is not depressed with Fe but rather seems to be on a par with other elements such as Mg in the E group. Gradients in stellar populations within galaxies are found to be mild, with SSP-equivalent age increasing by 25%, metallicity decreasing by [Z/H] = 0.20 dex, and [E/Fe] remaining nearly constant out to an aperture of radius re/2 for nearly all systems. Our ages have an overall zero-point uncertainty of at least ~25% because of uncertainties in the stellar evolution prescription, the oxygen abundance, the effect of [E/Fe] ≠ 0 on the isochrones, and other unknowns. However, the relative age rankings of stellar populations should be largely unaffected by these errors. In particular, the large spread in ages appears to be real and cannot be explained by contamination of Hβ by blue stragglers or hot horizontal-branch stars, or by fill-in of Hβ by emission. Correlations between these derived SSP-equivalent parameters and other galaxy observables will be discussed in future papers.

663 citations

Journal ArticleDOI
TL;DR: It is reported that the same vacuolar H-ATPase subunits are approximately equal to 50% identical to the alpha and beta subunits, respectively, of the sulfur-metabolizing Sulfolobus acidocaldarius, an archaebacterium (Archaeobacterium).
Abstract: Active transport across the vacuolar components of the eukaryotic endomembrane system is energized by a specific vacuolar H+-ATPase. The amino acid sequences of the 70- and 60-kDa subunits of the vacuolar H+-ATPase are approximately equal to 25% identical to the beta and alpha subunits, respectively, of the eubacterial-type F0F1-ATPases. We now report that the same vacuolar H+-ATPase subunits are approximately equal to 50% identical to the alpha and beta subunits, respectively, of the sulfur-metabolizing Sulfolobus acidocaldarius, an archaebacterium (Archaeobacterium). Moreover, the homologue of an 88-amino acid stretch near the amino-terminal end of the 70-kDa subunit is absent from the F0F1-ATPase beta subunit but is present in the alpha subunit of Sulfolobus. Since the two types of subunits (alpha and beta subunits; 60- and 70-kDa subunits) are homologous to each other, they must have arisen by a gene duplication that occurred prior to the last common ancestor of the eubacteria, eukaryotes, and Sulfolobus. Thus, the phylogenetic tree of the subunits can be rooted at the site where the gene duplication occurred. The inferred evolutionary tree contains two main branches: a eubacterial branch and an eocyte branch that gave rise to Sulfolobus and the eukaryotic host cell. The implication is that the vacuolar H+-ATPase of eukaryotes arose by the internalization of the plasma membrane H+-ATPase of an archaebacterial-like ancestral cell.

663 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the ACS BViz data from the HUDF and all other deep HST ACS fields (including the GOODS fields) to find large samples of star-forming galaxies at z~4 and z~5 and to extend their previous z~6 sample.
Abstract: We use the ACS BViz data from the HUDF and all other deep HST ACS fields (including the GOODS fields) to find large samples of star-forming galaxies at z~4 and z~5 and to extend our previous z~6 sample. These samples contain 4671, 1416, and 627 B, V, and i dropouts, respectively, and reach to extremely low luminosities (0.01-0.04 L* or M(UV)~-16 to -17), allowing us to determine the rest-frame UV luminosity function (LF) and faint-end slope alpha at z~4-6 to high accuracy. We find faint-end slopes alpha of -1.73+/-0.05 at z~4, -1.66+/-0.09 at z~5, and -1.74+/-0.16 at z~6 -- suggesting that the faint-end slope is very steep and shows little evolution with cosmic time. We find that M*(UV) brightens considerably in the 0.7 Gyr from z~6 to z~4 (by ~0.7 mag from M*=-20.24+/-0.19 to M*=-20.98+/-0.10). The observed increase in the characteristic luminosity over this range is almost identical to that expected for the halo mass function -- suggesting that the observed evolution is likely due to the hierarchical coalescence and merging of galaxies. The evolution in phi* is not significant. The UV luminosity density at z~6 is modestly lower (0.45+/-0.09 times) than that at z~4 (integrated to -17.5 AB mag) though a larger change is seen in the dust-corrected star-formation rate density. We thoroughly examine published LF results and assess the reasons for their wide dispersion. We argue that the results reported here are the most robust available. The extremely steep faint-end slopes alpha found here suggest that lower luminosity galaxies play a significant role in reionizing the universe. Finally, we consider recent search results for galaxies at z~7-8 and use them to extend our estimates of the evolution in M* from z~7-8 to z~4.

663 citations

Journal ArticleDOI
28 Jul 1995-Science
TL;DR: In this model, the fluctuations in the force distribution arise because of variations in the contact angles and the constraints imposed by the force balance on each bead in the pile.
Abstract: Experimental observations and numerical simulations of the large force inhomogeneities present in stationary bead packs are presented. Forces much larger than the mean occurred but were exponentially rare. An exactly soluble model reproduced many aspects of the experiments and simulations. In this model, the fluctuations in the force distribution arise because of variations in the contact angles and the constraints imposed by the force balance on each bead in the pile.

661 citations

Journal ArticleDOI
11 Nov 1993-Nature
TL;DR: The results show that the SWI2 family DNA-dependent ATPase domain has functional con-servation between yeast and humans and suggest that a SWI/SNF protein complex is required for the activation of selective mammalian genes.
Abstract: SEQUENCE-SPECIFIC DNA binding activators of gene transcription may be assisted by SWI2(SNF2)1,2, which contains a DNA-depen-dent ATPase domain3. We have isolated a human complementary DNA encoding a 205K nuclear protein, BRG1, that contains extensive homology to SWI2 and Drosophila brahma4,5. We report here that a SWI2/BRG1 chimaera with the DNA-dependent ATPase domain replaced by corresponding human sequence restored normal mitotic growth and capacity for transcriptional activation to swi2& minus; yeast cells. Point mutation of the conserved ATP binding site lysine abolished this complementation. This mutation in SW12 exerted a dominant negative effect on transcription in yeast. A lysine to arginine substitution at the corresponding residue of BRG1 also generated a transcriptional dominant negative in human cells. BRG1 is exclusively nuclear and present in a high Mr complex of about 2 & times; 106. These results show that the SWI2 family DNA-dependent ATPase domain has functional con-servation between yeast and humans and suggest that a SWI/SNF protein complex is required for the activation of selective mammalian genes.

661 citations


Authors

Showing all 15733 results

NameH-indexPapersCitations
David J. Schlegel193600193972
David R. Williams1782034138789
John R. Yates1771036129029
David Haussler172488224960
Evan E. Eichler170567150409
Anton M. Koekemoer1681127106796
Mark Gerstein168751149578
Alexander S. Szalay166936145745
Charles M. Lieber165521132811
Jorge E. Cortes1632784124154
M. Razzano155515106357
Lars Hernquist14859888554
Aaron Dominguez1471968113224
Taeghwan Hyeon13956375814
Garth D. Illingworth13750561793
Network Information
Related Institutions (5)
University of California, Berkeley
265.6K papers, 16.8M citations

94% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

93% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

92% related

Max Planck Society
406.2K papers, 19.5M citations

92% related

Stanford University
320.3K papers, 21.8M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202351
2022328
20212,157
20202,353
20192,209
20182,157