scispace - formally typeset
Search or ask a question
Institution

University of California, Santa Cruz

EducationSanta Cruz, California, United States
About: University of California, Santa Cruz is a education organization based out in Santa Cruz, California, United States. It is known for research contribution in the topics: Galaxy & Population. The organization has 15541 authors who have published 44120 publications receiving 2759983 citations. The organization is also known as: UCSC & UC, Santa Cruz.
Topics: Galaxy, Population, Star formation, Redshift, Planet


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used a numerical model for relativistic disk accretion to study steady-state accretion at high rates of gamma-ray burst (GRB) and found that neutrino annihilation in hyper-accreting black hole systems can explain bursts up to 10**52 erg.
Abstract: A variety of current models for gamma-ray bursts (GRBs) suggest a common engine - a black hole of several solar masses accreting matter from a disk at a rate 0.01 to 10 solar masses per second. Using a numerical model for relativistic disk accretion, we have studied steady-state accretion at these high rates. Inside a radius ~ 10**8 cm, for accretion rates greater than about 0.01 solar masses per second, a global state of balanced power comes to exist between neutrino losses, chiefly pair capture on nucleons, and dissipation. Energy emitted in neutrinos is less, and in the case of low accretion rates, very much less, than the maximum efficiency factor for black hole accretion (0.057 for no rotation; 0.42 for extreme Kerr rotation) times Mdot c**2. The efficiency for producing a pair fireball along the rotational axis by neutrino annihilation is calculated and found to be highly variable and very sensitive to the accretion rate. For some of the higher accretion rates studied, it can be several per cent or more; for accretion rates less than 0.05 solar masses per second, it is essentially zero. The efficiency of the Blandford-Znajek mechanism in extracting rotational energy from the black hole is also estimated. In light of these results, the viability of various gamma-ray burst models is discussed and the sensitivity of the results to disk viscosity, black hole rotation rate, and black hole mass explored. A diverse range of GRB energies seems unavoidable and neutrino annihilation in hyper-accreting black hole systems can explain bursts up to 10**52 erg. Larger energies may be inferred for beaming systems.

658 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review recent experimental and theoretical results on nanostructured materials of various dimensions: superlattices, nanowires, nanodots, and solid-state thermionic power generation devices.
Abstract: Recent advances in semiconductor thermoelectric physics and materials are reviewed. A key requirement to improve the energy conversion efficiency is to increase the Seebeck coefficient (S) and the electrical conductivity (σ) while reducing the electronic and lattice contributions to thermal conductivity (κe + κL). Some new physical concepts and nanostructures make it possible to modify the trade-offs between the bulk material properties through changes in the density of states, scattering rates, and interface effects on electron and phonon transport. We review recent experimental and theoretical results on nanostructured materials of various dimensions: superlattices, nanowires, nanodots, and solid-state thermionic power generation devices. Most of the recent success has been in the reduction of lattice thermal conductivity with the concurrent maintenance of good electrical conductivity. Several theoretical and experimental results to improve the thermoelectric power factor (S2σ) and to reduce the Lorenz ...

658 citations

Proceedings ArticleDOI
15 Jun 2009
TL;DR: This paper exploits the insight that the full generality of vector clocks is unnecessary in most cases to replace heavyweight vector clocks with an adaptive lightweight representation that, for almost all operations of the target program, requires only constant space and supports constant-time operations.
Abstract: \begin{}Multithreaded programs are notoriously prone to race conditions. Prior work on dynamic race detectors includes fast but imprecise race detectors that report false alarms, as well as slow but precise race detectors that never report false alarms. The latter typically use expensive vector clock operations that require time linear in the number of program threads.This paper exploits the insight that the full generality of vector clocks is unnecessary in most cases. That is, we can replace heavyweight vector clocks with an adaptive lightweight representation that, for almost all operations of the target program, requires only constant space and supports constant-time operations. This representation change significantly improves time and space performance, with no loss in precision.Experimental results on Java benchmarks including the Eclipse development environment show that our FastTrack race detector is an order of magnitude faster than a traditional vector-clock race detector, and roughly twice as fast as the high-performance DJIT+ algorithm. FastTrack is even comparable in speed to Eraser on our Java benchmarks, while never reporting false alarms.

657 citations

Journal ArticleDOI
TL;DR: A mathematical expression is derived to compute PrediXcan results using summary data, and the effects of gene expression variation on human phenotypes in 44 GTEx tissues and >100 phenotypes are investigated.
Abstract: Scalable, integrative methods to understand mechanisms that link genetic variants with phenotypes are needed. Here we derive a mathematical expression to compute PrediXcan (a gene mapping approach) results using summary data (S-PrediXcan) and show its accuracy and general robustness to misspecified reference sets. We apply this framework to 44 GTEx tissues and 100+ phenotypes from GWAS and meta-analysis studies, creating a growing public catalog of associations that seeks to capture the effects of gene expression variation on human phenotypes. Replication in an independent cohort is shown. Most of the associations are tissue specific, suggesting context specificity of the trait etiology. Colocalized significant associations in unexpected tissues underscore the need for an agnostic scanning of multiple contexts to improve our ability to detect causal regulatory mechanisms. Monogenic disease genes are enriched among significant associations for related traits, suggesting that smaller alterations of these genes may cause a spectrum of milder phenotypes.

657 citations

Journal ArticleDOI
01 Jan 1979
TL;DR: In this paper, concentrations of carbon, nitrogen and phosphorus were determined in particles that passively sank into multi-replicate collectors set at 50, 250, and 700 m in coastal waters, and 75, 575, and 1050 m in the open ocean.
Abstract: Concentrations of carbon, nitrogen and phosphorus were determined in particles that passively sank into multi-replicate collectors set at 50, 250, and 700 m in coastal waters, and 75, 575, and 1050 m in the open ocean. Fluxes as high as 36, 4.1, and 0.19 mmoles of C, N, and P m−2 day−1 were observed at 50 m under coastal upwelling conditions; at 700 m, upwelling period fluxes (9.6, 0.9, and, 0.053 mmoles of C, N and P m−2 day−1) exceeded those measured at 50 and 75 m when samplers were set under low productivity surface waters. 210Pb flux estimates were made on coastal trap particulates. The resulting values were close to the expected and suggest that overall flux estimates are representative of those occuring in the environment. Atomic ratios of C:N:P under upwelling conditions were similar to values reported for living plankton (∼180:18:1), while in the open ocean, atomic ratios of C and N in relation to P were markedly higher (400 to 900:30:1). Fecal pellet fluxes were two orders of magnitude higher under upwelling conditions (∼1 to 3 × 105m−2 day−1) than those in the open ocean (∼1000 m−2 day−1). Quantities of passively sinking particulate C, N, and P appeared to be equal to or in excess of the amounts required to meet the nutritional needs of the mid-water zooplankton. Rates of change for C, N, and P and inferred rates of oxygen change varied widely in relation to surface productivity. For example, oxygen utilization rates were as high as 790 μll−1 yr−1 in near-surface waters under upwelling conditions and as low as 4.4 μll−1 yr−1 at mid-depth in the open ocean. Our rates of change, determined by direct measurement, generally agree with previously published estimates from mathematical models.

655 citations


Authors

Showing all 15733 results

NameH-indexPapersCitations
David J. Schlegel193600193972
David R. Williams1782034138789
John R. Yates1771036129029
David Haussler172488224960
Evan E. Eichler170567150409
Anton M. Koekemoer1681127106796
Mark Gerstein168751149578
Alexander S. Szalay166936145745
Charles M. Lieber165521132811
Jorge E. Cortes1632784124154
M. Razzano155515106357
Lars Hernquist14859888554
Aaron Dominguez1471968113224
Taeghwan Hyeon13956375814
Garth D. Illingworth13750561793
Network Information
Related Institutions (5)
University of California, Berkeley
265.6K papers, 16.8M citations

94% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

93% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

92% related

Max Planck Society
406.2K papers, 19.5M citations

92% related

Stanford University
320.3K papers, 21.8M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202351
2022328
20212,157
20202,353
20192,209
20182,157