scispace - formally typeset
Search or ask a question
Institution

University of California, Santa Cruz

EducationSanta Cruz, California, United States
About: University of California, Santa Cruz is a education organization based out in Santa Cruz, California, United States. It is known for research contribution in the topics: Galaxy & Population. The organization has 15541 authors who have published 44120 publications receiving 2759983 citations. The organization is also known as: UCSC & UC, Santa Cruz.
Topics: Galaxy, Population, Stars, Redshift, Star formation


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the relationship between finance and economic growth using an innovative dynamic panel threshold technique has been investigated in 87 developed and developing countries, and the empirical results indicate that there is a threshold effect in the finance-growth relationship and that the level of financial development is beneficial to growth only up to a certain threshold.
Abstract: This study provides new evidence on the relationship between finance and economic growth using an innovative dynamic panel threshold technique. The sample consists of 87 developed and developing countries. The empirical results indicate that there is a threshold effect in the finance–growth relationship. In particular, we find that the level of financial development is beneficial to growth only up to a certain threshold; beyond the threshold level further development of finance tends to adversely affect growth. These findings reveal that more finance is not necessarily good for economic growth and highlight that an “optimal” level of financial development is more crucial in facilitating growth.

646 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide model radii for low-mass rocky super-Earths with hydrogen-helium envelopes, with envelope fractions 0.01-20 M ⊕, with levels of irradiation 0.1-1000 times Earth's, and ages from 100 Myr to 10 Gyr.
Abstract: Transiting planet surveys like Kepler have provided a wealth of information on the distribution of planetary radii, particularly for the new populations of super-Earth- and sub-Neptune-sized planets. In order to aid in the physical interpretation of these radii, we compute model radii for low-mass rocky planets with hydrogen-helium envelopes. We provide model radii for planets 1-20 M ⊕, with envelope fractions 0.01%-20%, levels of irradiation 0.1-1000 times Earth's, and ages from 100 Myr to 10 Gyr. In addition we provide simple analytic fits that summarize how radius depends on each of these parameters. Most importantly, we show that at fixed H/He envelope fraction, radii show little dependence on mass for planets with more than 1% of their mass in their envelope. Consequently, planetary radius is to a first order a proxy for planetary composition, i.e., H/He envelope fraction, for Neptune- and sub-Neptune-sized planets. We recast the observed mass-radius relationship as a mass-composition relationship and discuss it in light of traditional core accretion theory. We discuss the transition from rocky super-Earths to sub-Neptune planets with large volatile envelopes. We suggest 1.75 R ⊕ as a physically motivated dividing line between these two populations of planets. Finally, we discuss these results in light of the observed radius occurrence distribution found by Kepler. © 2014. The American Astronomical Society. All rights reserved.

645 citations

Journal ArticleDOI
TL;DR: The results suggest that the rate of spread and ecological impacts of a disease through a natural plant community will depend strongly on the phylogenetic structure of the community itself and that current regulatory approaches strongly underestimate the local risks of global movement of plant pathogens or their hosts.
Abstract: What determines which plant species are susceptible to a given plant pathogen is poorly understood. Experimental inoculations with fungal pathogens of plant leaves in a tropical rain forest show that most fungal pathogens are polyphagous but that most plant species in a local community are resistant to any given pathogen. The likelihood that a pathogen can infect two plant species decreases continuously with phylogenetic distance between the plants, even to ancient evolutionary distances. This phylogenetic signal in host range allows us to predict the likely host range of plant pathogens in a local community, providing an important tool for plant ecology, design of agronomic systems, quarantine regulations in international trade, and risk analysis of biological control agents. In particular, the results suggest that the rate of spread and ecological impacts of a disease through a natural plant community will depend strongly on the phylogenetic structure of the community itself and that current regulatory approaches strongly underestimate the local risks of global movement of plant pathogens or their hosts.

643 citations

Journal ArticleDOI
TL;DR: In this paper, the authors identify 73 z~7 and 59 z~8 candidate galaxies in the reionization epoch, and use this large 26-294 AB mag sample of galaxies to derive very deep luminosity functions.
Abstract: We identify 73 z~7 and 59 z~8 candidate galaxies in the reionization epoch, and use this large 26-294 AB mag sample of galaxies to derive very deep luminosity functions to <-18 AB mag and the star formation rate density at z~7 and z~8 The galaxy sample is derived using a sophisticated Lyman-Break technique on the full two-year WFC3/IR and ACS data available over the HUDF09 (~294 AB mag, 5 sigma), two nearby HUDF09 fields (~29 AB mag, 14 arcmin) and the wider area ERS (~275 AB mag) ~40 arcmin**2) The application of strict optical non-detection criteria ensures the contamination fraction is kept low (just ~7% in the HUDF) This very low value includes a full assessment of the contamination from lower redshift sources, photometric scatter, AGN, spurious sources, low mass stars, and transients (eg, SNe) From careful modelling of the selection volumes for each of our search fields we derive luminosity functions for galaxies at z~7 and z~8 to <-18 AB mag The faint-end slopes alpha at z~7 and z~8 are uncertain but very steep at alpha = -201+/-021 and alpha=-191+/-032, respectively Such steep slopes contrast to the local alpha<~-14 and may even be steeper than that at z~4 where alpha=-173+/-005 With such steep slopes (alpha<~-17) lower luminosity galaxies dominate the galaxy luminosity density during the epoch of reionization The star formation rate densities derived from these new z~7 and z~8 luminosity functions are consistent with the trends found at later times (lower redshifts) We find reasonable consistency, with the SFR densities implied from reported stellar mass densities, being only ~40% higher at z<7 This suggests that (1) the stellar mass densities inferred from the Spitzer IRAC photometry are reasonably accurate and (2) that the IMF at very high redshift may not be very different from that at later times

643 citations

Journal ArticleDOI
Daniela S. Gerhard1, Lukas Wagner1, Elise A. Feingold1, Carolyn M. Shenmen1, Lynette H. Grouse1, Greg Schuler1, Steven L. Klein1, Susan Old1, Rebekah S. Rasooly1, Peter J. Good1, Mark S. Guyer1, Allison M. Peck1, Jeffery G. Derge2, David J. Lipman1, Francis S. Collins1, Wonhee Jang1, Steven Sherry1, Mike Feolo1, Leonie Misquitta1, Eduardo Lee1, Kirill Rotmistrovsky1, Susan F. Greenhut1, Carl F. Schaefer1, Kenneth H. Buetow1, Tom I. Bonner1, David Haussler3, Jim Kent3, Mark Diekhans3, Terry Furey3, Michael R. Brent4, Christa Prange5, Kirsten Schreiber5, Nicole Shapiro5, Narayan K. Bhat2, Ralph F. Hopkins2, Florence Hsie, Tom Driscoll, M. Bento Soares6, Maria de Fatima Bonaldo6, Thomas L. Casavant6, Todd E. Scheetz6, Michael J. Brownstein1, Ted B. Usdin1, Shiraki Toshiyuki, Piero Carninci, Yulan Piao1, Dawood B. Dudekula1, Minoru S.H. Ko1, Koichi Kawakami7, Yutaka Suzuki8, Sumio Sugano8, C. E. Gruber, M. R. Smith, Blake A. Simmons, Troy Moore, Richard C. Waterman4, Stephen L. Johnson4, Yijun Ruan9, Chia-Lin Wei9, Sinnakaruppan Mathavan9, Preethi H. Gunaratne10, Jia Qian Wu10, Angela M. Garcia10, Stephen W. Hulyk10, Edwin Fuh10, Ye Yuan10, Anna Sneed10, Carla Kowis10, Anne Hodgson10, Donna M. Muzny10, John Douglas Mcpherson10, Richard A. Gibbs10, Jessica Fahey6, Jessica Fahey11, Erin Helton11, Mark Ketteman11, Anuradha Madan6, Anuradha Madan11, Stephanie Rodrigues11, Stephanie Rodrigues6, Amy Sanchez11, Michelle Whiting11, Anup Madan6, Anup Madan11, Alice C. Young1, Keith Wetherby1, Steven J. Granite1, Peggy N. Kwong1, Charles P. Brinkley1, Russell L. Pearson1, Gerard G. Bouffard1, Robert W. Blakesly1, Eric D. Green1, Mark Dickson12, Alex Rodriguez12, Jane Grimwood12, Jeremy Schmutz12, Richard M. Myers12, Yaron S.N. Butterfield13, Malachi Griffith13, Obi L. Griffith13, Martin Krzywinski13, Nancy Y. Liao13, Ryan Morrin13, Diana L. Palmquist13, Anca Petrescu13, Ursula Skalska13, Duane E. Smailus13, Jeff M. Stott13, Angelique Schnerch13, Jacqueline E. Schein13, Steven J.M. Jones13, Robert A. Holt13, Agnes Baross13, Marco A. Marra13, Sandra W. Clifton4, Kathryn A. Makowski, Stephanie Bosak, Joel A. Malek 
TL;DR: Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors.
Abstract: The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline

641 citations


Authors

Showing all 15733 results

NameH-indexPapersCitations
David J. Schlegel193600193972
David R. Williams1782034138789
John R. Yates1771036129029
David Haussler172488224960
Evan E. Eichler170567150409
Anton M. Koekemoer1681127106796
Mark Gerstein168751149578
Alexander S. Szalay166936145745
Charles M. Lieber165521132811
Jorge E. Cortes1632784124154
M. Razzano155515106357
Lars Hernquist14859888554
Aaron Dominguez1471968113224
Taeghwan Hyeon13956375814
Garth D. Illingworth13750561793
Network Information
Related Institutions (5)
University of California, Berkeley
265.6K papers, 16.8M citations

94% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

93% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

92% related

Max Planck Society
406.2K papers, 19.5M citations

92% related

Stanford University
320.3K papers, 21.8M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202351
2022328
20212,157
20202,353
20192,209
20182,157