scispace - formally typeset
Search or ask a question
Institution

University of California, Santa Cruz

EducationSanta Cruz, California, United States
About: University of California, Santa Cruz is a education organization based out in Santa Cruz, California, United States. It is known for research contribution in the topics: Galaxy & Population. The organization has 15541 authors who have published 44120 publications receiving 2759983 citations. The organization is also known as: UCSC & UC, Santa Cruz.
Topics: Galaxy, Population, Star formation, Redshift, Planet


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors outline a series of themes, questions, and concerns that should be addressed both in the work of scholars engaged in analyzing this emergent agenda, and in the efforts of advocates and donor institutions who are engaged in designing and implementing community-based natural resource management programs and policies.
Abstract: Recent years have witnessed the emergence of a loosely woven transnational movement, based particularly on advocacy by nongovernmental organizations working with local groups and communities, on the one hand, and national and transnational organizations, on the other, to build and extend new versions of environmental and social advocacy that link social justice and environmental management agendas. One of the most significant developments has been the promotion of community‐based natural resource management programs and policies. However, the success of disseminating this paradigm has raised new challenges, as concepts of community, territory, conservation, and indigenous are worked into politically varied plans and programs in disparate sites. We outline a series of themes, questions, and concerns that we believe should be addressed both in the work of scholars engaged in analyzing this emergent agenda, and in the efforts of advocates and donor institutions who are engaged in designing and implementing s...

570 citations

Posted ContentDOI
Arang Rhie1, Shane A. McCarthy2, Olivier Fedrigo3, Joana Damas4, Giulio Formenti3, Sergey Koren1, Marcela Uliano-Silva2, William Chow2, Arkarachai Fungtammasan, Gregory Gedman3, Lindsey J. Cantin3, Françoise Thibaud-Nissen1, Leanne Haggerty5, Chul Hee Lee6, Byung June Ko6, J. H. Kim6, Iliana Bista2, Michelle Smith2, Bettina Haase3, Jacquelyn Mountcastle3, Sylke Winkler7, Sadye Paez3, Jason T. Howard8, Sonja C. Vernes7, Tanya M. Lama9, Frank Grützner10, Wesley C. Warren11, Christopher N. Balakrishnan12, Dave W Burt13, Jimin George14, Matthew T. Biegler3, David Iorns15, Andrew Digby, Daryl Eason, Taylor Edwards16, Mark Wilkinson17, George F. Turner18, Axel Meyer19, Andreas F. Kautt19, Paolo Franchini19, H. William Detrich20, Hannes Svardal21, Maximilian Wagner22, Gavin J. P. Naylor23, Martin Pippel7, Milan Malinsky2, Mark Mooney, Maria Simbirsky, Brett T. Hannigan, Trevor Pesout24, Marlys L. Houck, Ann C Misuraca, Sarah B. Kingan25, Richard Hall25, Zev N. Kronenberg25, Jonas Korlach25, Ivan Sović25, Christopher Dunn25, Zemin Ning2, Alex Hastie, Joyce V. Lee, Siddarth Selvaraj, Richard E. Green24, Nicholas H. Putnam, Jay Ghurye26, Erik Garrison24, Ying Sims2, Joanna Collins2, Sarah Pelan2, James Torrance2, Alan Tracey2, Jonathan Wood2, Dengfeng Guan27, Sarah E. London28, David F. Clayton14, Claudio V. Mello29, Samantha R. Friedrich29, Peter V. Lovell29, Ekaterina Osipova7, Farooq O. Al-Ajli30, Simona Secomandi31, Heebal Kim6, Constantina Theofanopoulou3, Yang Zhou32, Robert S. Harris33, Kateryna D. Makova33, Paul Medvedev33, Jinna Hoffman1, Patrick Masterson1, Karen Clark1, Fergal J. Martin5, Kevin L. Howe5, Paul Flicek5, Brian P. Walenz1, Woori Kwak, Hiram Clawson24, Mark Diekhans24, Luis R Nassar24, Benedict Paten24, Robert H. S. Kraus19, Harris A. Lewin4, Andrew J. Crawford34, M. Thomas P. Gilbert32, Guojie Zhang32, Byrappa Venkatesh35, Robert W. Murphy36, Klaus-Peter Koepfli37, Beth Shapiro24, Warren E. Johnson37, Federica Di Palma38, Tomas Marques-Bonet39, Emma C. Teeling40, Tandy Warnow41, Jennifer A. Marshall Graves42, Oliver A. Ryder43, David Haussler24, Stephen J. O'Brien44, Kerstin Howe2, Eugene W. Myers45, Richard Durbin2, Adam M. Phillippy1, Erich D. Jarvis3 
23 May 2020-bioRxiv
TL;DR: The Vertebrate Genomes Project is embarked on, an effort to generate high-quality, complete reference genomes for all ~70,000 extant vertebrate species and help enable a new era of discovery across the life sciences.
Abstract: High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are only available for a few non-microbial species. To address this issue, the international Genome 10K (G10K) consortium has worked over a five-year period to evaluate and develop cost-effective methods for assembling the most accurate and complete reference genomes to date. Here we summarize these developments, introduce a set of quality standards, and present lessons learned from sequencing and assembling 16 species representing major vertebrate lineages (mammals, birds, reptiles, amphibians, teleost fishes and cartilaginous fishes). We confirm that long-read sequencing technologies are essential for maximizing genome quality and that unresolved complex repeats and haplotype heterozygosity are major sources of error in assemblies. Our new assemblies identify and correct substantial errors in some of the best historical reference genomes. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an effort to generate high-quality, complete reference genomes for all ~70,000 extant vertebrate species and help enable a new era of discovery across the life sciences.

567 citations

Journal ArticleDOI
TL;DR: Forward and reverse ratcheting of DNA templates through the α-hemolysin nanopore controlled by phi29 DNA polymerase without the need for active voltage control facilitates multiple reads of individual strands and is transferable to other nanopore devices for implementation of DNA sequence analysis.
Abstract: A key obstacle to sequencing DNA as it passes through a nanopore is that the translocation rate is too fast to resolve individual bases. Cherf et al. solve this problem with an improved method for ratcheting DNA forward and backward through the nanopore using a DNA polymerase.

567 citations

Journal ArticleDOI
TL;DR: Control-flow integrity (CFI) as discussed by the authors is a basic safety property, which can prevent malicious code from arbitrarily controlling program behavior, even with respect to powerful adversaries, and can be enforced formally.
Abstract: Current software attacks often build on exploits that subvert machine-code execution. The enforcement of a basic safety property, control-flow integrity (CFI), can prevent such attacks from arbitrarily controlling program behavior. CFI enforcement is simple and its guarantees can be established formally, even with respect to powerful adversaries. Moreover, CFI enforcement is practical: It is compatible with existing software and can be done efficiently using software rewriting in commodity systems. Finally, CFI provides a useful foundation for enforcing further security policies, as we demonstrate with efficient software implementations of a protected shadow call stack and of access control for memory regions.

566 citations


Authors

Showing all 15733 results

NameH-indexPapersCitations
David J. Schlegel193600193972
David R. Williams1782034138789
John R. Yates1771036129029
David Haussler172488224960
Evan E. Eichler170567150409
Anton M. Koekemoer1681127106796
Mark Gerstein168751149578
Alexander S. Szalay166936145745
Charles M. Lieber165521132811
Jorge E. Cortes1632784124154
M. Razzano155515106357
Lars Hernquist14859888554
Aaron Dominguez1471968113224
Taeghwan Hyeon13956375814
Garth D. Illingworth13750561793
Network Information
Related Institutions (5)
University of California, Berkeley
265.6K papers, 16.8M citations

94% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

93% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

92% related

Max Planck Society
406.2K papers, 19.5M citations

92% related

Stanford University
320.3K papers, 21.8M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202351
2022328
20212,157
20202,353
20192,209
20182,157