scispace - formally typeset
Search or ask a question
Institution

University of California, Santa Cruz

EducationSanta Cruz, California, United States
About: University of California, Santa Cruz is a education organization based out in Santa Cruz, California, United States. It is known for research contribution in the topics: Galaxy & Population. The organization has 15541 authors who have published 44120 publications receiving 2759983 citations. The organization is also known as: UCSC & UC, Santa Cruz.
Topics: Galaxy, Population, Star formation, Redshift, Planet


Papers
More filters
Journal ArticleDOI
Thomas J. Hudson1, Thomas J. Hudson2, Warwick Anderson3, Axel Aretz4  +270 moreInstitutions (92)
15 Apr 2010
TL;DR: Systematic studies of more than 25,000 cancer genomes will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.
Abstract: The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.

2,041 citations

Journal ArticleDOI
TL;DR: The results suggest the presence of an EF-hand calcium binding motif in a highly conserved and evolutionary preserved putative intracellular region of 155 residues in the alpha-1 subunit of L-type calcium channels which play an important role in excitation-contraction coupling.

2,033 citations

Journal ArticleDOI
15 Nov 2000-Proteins
TL;DR: Analysis of amino acid sequences, based on the normalized net charge and mean hydrophobicity, has been applied to two sets of proteins and shows that “natively unfolded” proteins are specifically localized within a unique region of charge‐hydrophobia phase space.
Abstract: "Natively unfolded" proteins occupy a unique niche within the protein kingdom in that they lack ordered structure under conditions of neutral pH in vitro. Analysis of amino acid sequences, based on the normalized net charge and mean hydrophobicity, has been applied to two sets of proteins: small globular folded proteins and "natively unfolded" ones. The results show that "natively unfolded" proteins are specifically localized within a unique region of charge-hydrophobicity phase space and indicate that a combination of low overall hydrophobicity and large net charge represent a unique structural feature of "natively unfolded" proteins.

2,029 citations

Journal ArticleDOI
TL;DR: Scolnic et al. as discussed by the authors presented optical light curves, redshifts, and classifications for 365 spectroscopically confirmed Type Ia supernovae (SNe Ia) discovered by the Pan-STARRS1 (PS1) Medium Deep Survey.
Abstract: Author(s): Scolnic, DM; Jones, DO; Rest, A; Pan, YC; Chornock, R; Foley, RJ; Huber, ME; Kessler, R; Narayan, G; Riess, AG; Rodney, S; Berger, E; Brout, DJ; Challis, PJ; Drout, M; Finkbeiner, D; Lunnan, R; Kirshner, RP; Sanders, NE; Schlafly, E; Smartt, S; Stubbs, CW; Tonry, J; Wood-Vasey, WM; Foley, M; Hand, J; Johnson, E; Burgett, WS; Chambers, KC; Draper, PW; Hodapp, KW; Kaiser, N; Kudritzki, RP; Magnier, EA; Metcalfe, N; Bresolin, F; Gall, E; Kotak, R; McCrum, M; Smith, KW | Abstract: We present optical light curves, redshifts, and classifications for 365 spectroscopically confirmed Type Ia supernovae (SNe Ia) discovered by the Pan-STARRS1 (PS1) Medium Deep Survey. We detail improvements to the PS1 SN photometry, astrometry, and calibration that reduce the systematic uncertainties in the PS1 SN Ia distances. We combine the subset of 279 PS1 SNe Ia (0.03 l z l 0.68) with useful distance estimates of SNe Ia from the Sloan Digital Sky Survey (SDSS), SNLS, and various low-z and Hubble Space Telescope samples to form the largest combined sample of SNe Ia, consisting of a total of 1048 SNe Ia in the range of 0.01 l z l 2.3, which we call the Pantheon Sample. When combining Planck 2015 cosmic microwave background (CMB) measurements with the Pantheon SN sample, we find Wm = 0.307 ± 0.012 and w = -1.026 ± 0.041 for the wCDM model. When the SN and CMB constraints are combined with constraints from BAO and local H0 measurements, the analysis yields the most precise measurement of dark energy to date: w0 = -1.007 ± 0.089 and wa = -0.222 ± 0.407 for the w0waCDM model. Tension with a cosmological constant previously seen in an analysis of PS1 and low-z SNe has diminished after an increase of 2× in the statistics of the PS1 sample, improved calibration and photometry, and stricter light-curve quality cuts. We find that the systematic uncertainties in our measurements of dark energy are almost as large as the statistical uncertainties, primarily due to limitations of modeling the low-redshift sample. This must be addressed for future progress in using SNe Ia to measure dark energy.

2,025 citations

Journal ArticleDOI
TL;DR: The SDN architecture and the OpenFlow standard in particular are presented, current alternatives for implementation and testing of SDN-based protocols and services are discussed, current and future SDN applications are examined, and promising research directions based on the SDN paradigm are explored.
Abstract: The idea of programmable networks has recently re-gained considerable momentum due to the emergence of the Software-Defined Networking (SDN) paradigm. SDN, often referred to as a ''radical new idea in networking'', promises to dramatically simplify network management and enable innovation through network programmability. This paper surveys the state-of-the-art in programmable networks with an emphasis on SDN. We provide a historic perspective of programmable networks from early ideas to recent developments. Then we present the SDN architecture and the OpenFlow standard in particular, discuss current alternatives for implementation and testing of SDN-based protocols and services, examine current and future SDN applications, and explore promising research directions based on the SDN paradigm.

2,013 citations


Authors

Showing all 15733 results

NameH-indexPapersCitations
David J. Schlegel193600193972
David R. Williams1782034138789
John R. Yates1771036129029
David Haussler172488224960
Evan E. Eichler170567150409
Anton M. Koekemoer1681127106796
Mark Gerstein168751149578
Alexander S. Szalay166936145745
Charles M. Lieber165521132811
Jorge E. Cortes1632784124154
M. Razzano155515106357
Lars Hernquist14859888554
Aaron Dominguez1471968113224
Taeghwan Hyeon13956375814
Garth D. Illingworth13750561793
Network Information
Related Institutions (5)
University of California, Berkeley
265.6K papers, 16.8M citations

94% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

93% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

92% related

Max Planck Society
406.2K papers, 19.5M citations

92% related

Stanford University
320.3K papers, 21.8M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202351
2022328
20212,157
20202,353
20192,209
20182,157