scispace - formally typeset
Search or ask a question
Institution

University of California, Santa Cruz

EducationSanta Cruz, California, United States
About: University of California, Santa Cruz is a education organization based out in Santa Cruz, California, United States. It is known for research contribution in the topics: Galaxy & Population. The organization has 15541 authors who have published 44120 publications receiving 2759983 citations. The organization is also known as: UCSC & UC, Santa Cruz.
Topics: Galaxy, Population, Stars, Redshift, Star formation


Papers
More filters
Journal ArticleDOI
TL;DR: This list of scientists and lecturers from the United States and Canada who have contributed to the scientific literature over the past 25 years has been compiled.
Abstract: Mary E. Power is a professor in the Department of Integrative Biology, University of California, Berkeley, CA 94720. David Tilman is a professor in the Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108. James A. Estes is a wildlife biologist in the National Biological Service, Institute of Marine Science, University of California, Santa Cruz, CA 95064. Bruce A. Menge is a professor in the Department of Zoology, Oregon State University, Corvallis, OR 97331. William J. Bond is a professor doctor in the Department of Botany, University of Cape Town, Rondebosch 7700 South Africa. L. Scott Mills is an assistant professor in the Wildlife Biology Program, School of Forestry, University of Montana, Missoula, MT 59812. Gretchen Daily is Bing Interdisciplinary Research Scientist, Department of Biological Science, Stanford University, Stanford, CA 94305. Juan Carlos Castilla is a full professor and marine biology head in Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Casilla 114-D, Santiago, Chile. Jane Lubchenco is a distinguished professor in the Department of Zoology, Oregon State University, Corvallis, OR 97331. Robert T. Paine is a professor in the Department of Zoology, NJ-15, University of Washington, Seattle, WA 98195. ? 1996 American Institute of Biological Sciences. A keystone species is

1,724 citations

Journal ArticleDOI
01 Jul 2005
TL;DR: The SCAPE method is capable of constructing a high-quality animated surface model of a moving person, with realistic muscle deformation, using just a single static scan and a marker motion capture sequence of the person.
Abstract: We introduce the SCAPE method (Shape Completion and Animation for PEople)---a data-driven method for building a human shape model that spans variation in both subject shape and pose. The method is based on a representation that incorporates both articulated and non-rigid deformations. We learn a pose deformation model that derives the non-rigid surface deformation as a function of the pose of the articulated skeleton. We also learn a separate model of variation based on body shape. Our two models can be combined to produce 3D surface models with realistic muscle deformation for different people in different poses, when neither appear in the training set. We show how the model can be used for shape completion --- generating a complete surface mesh given a limited set of markers specifying the target shape. We present applications of shape completion to partial view completion and motion capture animation. In particular, our method is capable of constructing a high-quality animated surface model of a moving person, with realistic muscle deformation, using just a single static scan and a marker motion capture sequence of the person.

1,719 citations

Journal ArticleDOI
TL;DR: It is concluded that bafilomycin A1 is a valuable tool for distinguishing among the three different types of ATPases and represents the first relatively specific potent inhibitor of vacuolar ATPases.
Abstract: Various membrane ATPases have been tested for their sensitivity to bafilomycin A1, a macrolide antibiotic F1F0 ATPases from bacteria and mitochondria are not affected by this antibiotic In contrast, E1E2 ATPases--eg, the K+-dependent (Kdp) ATPase from Escherichia coli, the Na+,K+-ATPase from ox brain, and the Ca2+-ATPase from sarcoplasmic reticulum--are moderately sensitive to this inhibitor Finally, membrane ATPases from Neurospora vacuoles, chromaffin granules, and plant vacuoles are extremely sensitive From this we conclude that bafilomycin A1 is a valuable tool for distinguishing among the three different types of ATPases and represents the first relatively specific potent inhibitor of vacuolar ATPases

1,715 citations

Proceedings ArticleDOI
01 Jun 1994
TL;DR: The high-resolution echelle spectrometer (HIRES) as discussed by the authors is a standard in-plane spectrograph with grating post dispersion, which is permanently located at a Nasmyth focus.
Abstract: We describe the high resolution echelle spectrometer (HIRES) now in operation on the Keck Telescope. HIRES, which is permanently located at a Nasmyth focus, is a standard in-plane echelle spectrometer with grating post dispersion. The collimated beam diameter is 12', and the echelle is a 1 x 3 mosaic, 12' by 48' in total size, of 52.6 gr mmMIN1, R-2.8 echelles. The cross disperser is a 2 x 1 mosaic, 24' by 16 ' in size. The camera is of a unique new design: a large (30' aperture) f/1.0, all spherical, all fused silica, catadioptric system with superachromatic performance. It spans the entire chromatic range from 0.3 (mu) to beyond 1.1 (mu) , delivering 12.6-micron (rms) images, averaged over all colors and field angles, without refocus. The detector is a thinned, backside-illuminated, Tektronix 2048 x 2048 CCD with 24-micron pixels, which spans the spectral region from 0.3 (mu) to 1.1 (mu) with very high overall quantum efficiency. The limiting spectral resolution of HIRES is 67,000 with the present CCD pixel size. The overall 'throughput' (resolution x slit width) product achieved by HIRES is 39,000 arcseconds. Peak overall efficiency for the spectrograph (not including telescope and slit losses) is 13% at 6000 angstrom. Some first-light science activities, including quasar absorption line spectra, beryllium abundances in metal-poor stars, lithium abundances in brown-dwarf candidates, and asteroseismology are discussed.© (1994) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

1,703 citations

Journal ArticleDOI
TL;DR: The overall architecture of the Bioperl toolkit is described, the problem domains that it addresses, and specific examples of how the toolkit can be used to solve common life-sciences problems are given.
Abstract: The Bioperl project is an international open-source collaboration of biologists, bioinformaticians, and computer scientists that has evolved over the past 7 yr into the most comprehensive library of Perl modules available for managing and manipulating life-science information. Bioperl provides an easy-to-use, stable, and consistent programming interface for bioinformatics application programmers. The Bioperl modules have been successfully and repeatedly used to reduce otherwise complex tasks to only a few lines of code. The Bioperl object model has been proven to be flexible enough to support enterprise-level applications such as EnsEMBL, while maintaining an easy learning curve for novice Perl programmers. Bioperl is capable of executing analyses and processing results from programs such as BLAST, ClustalW, or the EMBOSS suite. Interoperation with modules written in Python and Java is supported through the evolving BioCORBA bridge. Bioperl provides access to data stores such as GenBank and SwissProt via a flexible series of sequence input/output modules, and to the emerging common sequence data storage format of the Open Bioinformatics Database Access project. This study describes the overall architecture of the toolkit, the problem domains that it addresses, and gives specific examples of how the toolkit can be used to solve common life-sciences problems. We conclude with a discussion of how the open-source nature of the project has contributed to the development effort.

1,694 citations


Authors

Showing all 15733 results

NameH-indexPapersCitations
David J. Schlegel193600193972
David R. Williams1782034138789
John R. Yates1771036129029
David Haussler172488224960
Evan E. Eichler170567150409
Anton M. Koekemoer1681127106796
Mark Gerstein168751149578
Alexander S. Szalay166936145745
Charles M. Lieber165521132811
Jorge E. Cortes1632784124154
M. Razzano155515106357
Lars Hernquist14859888554
Aaron Dominguez1471968113224
Taeghwan Hyeon13956375814
Garth D. Illingworth13750561793
Network Information
Related Institutions (5)
University of California, Berkeley
265.6K papers, 16.8M citations

94% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

93% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

92% related

Max Planck Society
406.2K papers, 19.5M citations

92% related

Stanford University
320.3K papers, 21.8M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202351
2022328
20212,157
20202,353
20192,209
20182,157