scispace - formally typeset
Institution

University of Cambridge

EducationCambridge, United Kingdom
About: University of Cambridge is a(n) education organization based out in Cambridge, United Kingdom. It is known for research contribution in the topic(s): Population & Galaxy. The organization has 118293 authors who have published 282289 publication(s) receiving 14497093 citation(s). The organization is also known as: Cambridge University & Cambridge.
Topics: Population, Galaxy, Transplantation, Redshift, Gene
Papers
More filters

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4, J. Aumont2, Carlo Baccigalupi5, A. J. Banday6, A. J. Banday7, R. B. Barreiro8, James G. Bartlett9, James G. Bartlett3, N. Bartolo10, N. Bartolo11, E. Battaner12, Richard A. Battye13, K. Benabed14, Alain Benoit15, A. Benoit-Lévy16, A. Benoit-Lévy14, J.-P. Bernard7, J.-P. Bernard6, Marco Bersanelli17, Marco Bersanelli18, P. Bielewicz5, P. Bielewicz6, J. J. Bock9, Anna Bonaldi13, Laura Bonavera8, J. R. Bond19, Julian Borrill20, Julian Borrill21, François R. Bouchet14, Francois Boulanger2, M. Bucher3, Carlo Burigana17, Carlo Burigana22, R. C. Butler17, Erminia Calabrese23, Jean-François Cardoso3, Jean-François Cardoso24, Jean-François Cardoso14, A. Catalano25, A. Catalano26, Anthony Challinor4, A. Chamballu3, A. Chamballu2, A. Chamballu27, Ranga-Ram Chary9, H. C. Chiang28, H. C. Chiang29, Jens Chluba30, P. R. Christensen31, Sarah E. Church32, David L. Clements33, S. Colombi14, L. P. L. Colombo9, L. P. L. Colombo34, C. Combet26, A. Coulais25, B. P. Crill9, A. Curto8, A. Curto4, F. Cuttaia17, Luigi Danese5, R. D. Davies13, R. J. Davis13, P. de Bernardis35, A. de Rosa17, G. de Zotti17, G. de Zotti5, Jacques Delabrouille3, F.-X. Désert26, E. Di Valentino14, Clive Dickinson13, Jose M. Diego8, Klaus Dolag36, Klaus Dolag37, H. Dole38, H. Dole2, S. Donzelli17, Olivier Doré9, Marian Douspis2, A. Ducout14, A. Ducout33, Jo Dunkley23, X. Dupac39, George Efstathiou4, F. Elsner14, F. Elsner16, Torsten A. Enßlin37, H. K. Eriksen40, Marzieh Farhang41, Marzieh Farhang19, James R. Fergusson4, Fabio Finelli17, Olivier Forni6, Olivier Forni7, M. Frailis17, A. A. Fraisse28, E. Franceschi17, A. Frejsel31, S. Galeotta17, S. Galli42, K. Ganga3, C. Gauthier3, C. Gauthier43, M. Gerbino44, M. Gerbino45, M. Gerbino35, Tuhin Ghosh2, M. Giard6, M. Giard7, Y. Giraud-Héraud3, Elena Giusarma35, E. Gjerløw40, J. González-Nuevo46, J. González-Nuevo8, Krzysztof M. Gorski47, Krzysztof M. Gorski9, Serge Gratton4, A. Gregorio17, A. Gregorio48, Alessandro Gruppuso17, Jon E. Gudmundsson45, Jon E. Gudmundsson28, Jon E. Gudmundsson44, Jan Hamann49, Jan Hamann50, F. K. Hansen40, Duncan Hanson9, Duncan Hanson51, Duncan Hanson19, D. L. Harrison4, George Helou9, Sophie Henrot-Versille52, C. Hernández-Monteagudo37, D. Herranz8, S. R. Hildebrandt9, E. Hivon14, Michael P. Hobson4, W. A. Holmes9, Allan Hornstrup53, W. Hovest37, Zhiqi Huang19, Kevin M. Huffenberger54, G. Hurier2, Andrew H. Jaffe33, T. R. Jaffe6, T. R. Jaffe7, W. C. Jones28, Mika Juvela55, E. Keihänen55, Reijo Keskitalo20, Theodore Kisner20, R. Kneissl56, R. Kneissl57, J. Knoche37, Lloyd Knox58, Martin Kunz59, Martin Kunz60, Martin Kunz2, Hannu Kurki-Suonio55, Guilaine Lagache61, Guilaine Lagache2, Anne Lähteenmäki62, Anne Lähteenmäki63, J.-M. Lamarre25, Anthony Lasenby4, Massimiliano Lattanzi22, Charles R. Lawrence9, J. P. Leahy13, R. Leonardi, Julien Lesgourgues50, Julien Lesgourgues64, François Levrier25, Antony Lewis65, Michele Liguori10, Michele Liguori11, P. B. Lilje40, M. Linden-Vørnle53, M. López-Caniego39, M. López-Caniego8, Philip Lubin66, J. F. Macías-Pérez26, G. Maggio17, Davide Maino18, Davide Maino17, N. Mandolesi17, N. Mandolesi22, A. Mangilli2, A. Mangilli52, A. Marchini, Michele Maris17, Peter G. Martin19, M. Martinelli67, E. Martínez-González8, Silvia Masi35, Sabino Matarrese10, Sabino Matarrese11, P. McGehee9, Peter Meinhold66, Alessandro Melchiorri35, Jean-Baptiste Melin27, L. Mendes39, A. Mennella18, A. Mennella17, M. Migliaccio4, Marius Millea58, Subhasish Mitra9, Subhasish Mitra68, M.-A. Miville-Deschênes2, M.-A. Miville-Deschênes19, A. Moneti14, L. Montier6, L. Montier7, Gianluca Morgante17, Daniel J. Mortlock33, Adam Moss69, Dipak Munshi1, J. A. Murphy70, Pavel Naselsky31, Federico Nati28, Paolo Natoli22, Paolo Natoli71, Calvin B. Netterfield19, Hans Ulrik Nørgaard-Nielsen53, F. Noviello13, Dmitry Novikov72, I. D. Novikov31, I. D. Novikov72, C. A. Oxborrow53, F. Paci5, L. Pagano35, F. Pajot2, Roberta Paladini9, Daniela Paoletti17, Bruce Partridge73, F. Pasian17, G. Patanchon3, T. J. Pearson9, O. Perdereau52, L. Perotto26, Francesca Perrotta5, Valeria Pettorino67, F. Piacentini35, M. Piat3, E. Pierpaoli34, Davide Pietrobon9, Stéphane Plaszczynski52, Etienne Pointecouteau7, Etienne Pointecouteau6, G. Polenta17, G. Polenta71, L. Popa, G. W. Pratt3, G. Prézeau9, Simon Prunet14, J.-L. Puget2, Jörg P. Rachen74, Jörg P. Rachen37, William T. Reach75, Rafael Rebolo76, Rafael Rebolo8, M. Reinecke37, Mathieu Remazeilles13, Mathieu Remazeilles2, Mathieu Remazeilles3, C. Renault26, A. Renzi77, I. Ristorcelli7, I. Ristorcelli6, Graca Rocha9, C. Rosset3, M. Rossetti18, M. Rossetti17, G. Roudier3, G. Roudier25, G. Roudier9, B. Rouillé d'Orfeuil52, Michael Rowan-Robinson33, Jose Alberto Rubino-Martin76, Jose Alberto Rubino-Martin8, Ben Rusholme9, Najla Said35, Valentina Salvatelli35, Valentina Salvatelli61, Laura Salvati35, M. Sandri17, D. Santos26, M. Savelainen55, Giorgio Savini16, Douglas Scott78, Michael Seiffert9, Paolo Serra2, E. P. S. Shellard4, Locke D. Spencer1, M. Spinelli52, V. Stolyarov79, V. Stolyarov72, V. Stolyarov4, R. Stompor3, R. Sudiwala1, R. A. Sunyaev37, R. A. Sunyaev72, D. Sutton4, A.-S. Suur-Uski55, J.-F. Sygnet14, J. A. Tauber39, Luca Terenzi17, Luca Terenzi80, L. Toffolatti46, L. Toffolatti8, L. Toffolatti17, M. Tomasi18, M. Tomasi17, M. Tristram52, Tiziana Trombetti22, Tiziana Trombetti17, M. Tucci60, J. Tuovinen81, Marc Türler60, G. Umana17, Luca Valenziano17, Jussi-Pekka Väliviita55, F. Van Tent52, P. Vielva8, Fabrizio Villa17, L. A. Wade9, Benjamin D. Wandelt82, Benjamin D. Wandelt14, Ingunn Kathrine Wehus40, Ingunn Kathrine Wehus9, Martin White21, Simon D. M. White37, Althea Wilkinson13, D. Yvon27, Andrea Zacchei17, Andrea Zonca66 
Cardiff University1, Université Paris-Saclay2, Paris Diderot University3, University of Cambridge4, International School for Advanced Studies5, Hoffmann-La Roche6, University of Toulouse7, Spanish National Research Council8, California Institute of Technology9, University of Padua10, Istituto Nazionale di Fisica Nucleare11, University of Granada12, University of Manchester13, Institut d'Astrophysique de Paris14, Joseph Fourier University15, University College London16, INAF17, University of Milan18, University of Toronto19, Lawrence Berkeley National Laboratory20, University of California, Berkeley21, University of Ferrara22, University of Oxford23, Télécom ParisTech24, Centre national de la recherche scientifique25, University of Grenoble26, DSM27, Princeton University28, University of KwaZulu-Natal29, Johns Hopkins University30, Niels Bohr Institute31, Stanford University32, Imperial College London33, University of Southern California34, Sapienza University of Rome35, Ludwig Maximilian University of Munich36, Max Planck Society37, Institut Universitaire de France38, European Space Agency39, University of Oslo40, Shahid Beheshti University41, University of Chicago42, National Taiwan University43, Nordic Institute for Theoretical Physics44, Stockholm University45, University of Oviedo46, University of Warsaw47, University of Trieste48, University of Sydney49, CERN50, McGill University51, University of Paris-Sud52, Technical University of Denmark53, Florida State University54, University of Helsinki55, Atacama Large Millimeter Submillimeter Array56, European Southern Observatory57, University of California, Davis58, African Institute for Mathematical Sciences59, University of Geneva60, Aix-Marseille University61, Helsinki Institute of Physics62, Aalto University63, RWTH Aachen University64, University of Sussex65, University of California, Santa Barbara66, Heidelberg University67, Savitribai Phule Pune University68, University of Nottingham69, National University of Ireland70, Agenzia Spaziale Italiana71, Russian Academy of Sciences72, Haverford College73, Radboud University Nijmegen74, Universities Space Research Association75, University of La Laguna76, University of Rome Tor Vergata77, University of British Columbia78, Kazan Federal University79, Università degli Studi eCampus80, Trinity College, Dublin81, University of Illinois at Urbana–Champaign82
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,334 citations


Journal ArticleDOI
Abstract: In the classical theory black holes can only absorb and not emit particles. However it is shown that quantum mechanical effects cause black holes to create and emit particles as if they were hot bodies with temperature\(\frac{{h\kappa }}{{2\pi k}} \approx 10^{ - 6} \left( {\frac{{M_ \odot }}{M}} \right){}^ \circ K\) where κ is the surface gravity of the black hole. This thermal emission leads to a slow decrease in the mass of the black hole and to its eventual disappearance: any primordial black hole of mass less than about 1015 g would have evaporated by now. Although these quantum effects violate the classical law that the area of the event horizon of a black hole cannot decrease, there remains a Generalized Second Law:S+1/4A never decreases whereS is the entropy of matter outside black holes andA is the sum of the surface areas of the event horizons. This shows that gravitational collapse converts the baryons and leptons in the collapsing body into entropy. It is tempting to speculate that this might be the reason why the Universe contains so much entropy per baryon.

10,022 citations


Journal ArticleDOI
TL;DR: The Cambridge Structural Database now contains data for more than a quarter of a million small-molecule crystal structures, and projections concerning future accession rates indicate that the CSD will contain at least 500,000 crystal structures by the year 2010.
Abstract: The Cambridge Structural Database (CSD) now contains data for more than a quarter of a million small-molecule crystal structures. The information content of the CSD, together with methods for data acquisition, processing and validation, are summarized, with particular emphasis on the chemical information added by CSD editors. Nearly 80% of new structural data arrives electronically, mostly in CIF format, and the CCDC acts as the official crystal structure data depository for 51 major journals. The CCDC now maintains both a CIF archive (more than 73000 CIFs dating from 1996), as well as the distributed binary CSD archive; the availability of data in both archives is discussed. A statistical survey of the CSD is also presented and projections concerning future accession rates indicate that the CSD will contain at least 500000 crystal structures by the year 2010.

9,664 citations


Journal ArticleDOI
TL;DR: An overview of the CCP4 software suite for macromolecular crystallography is given.
Abstract: The CCP4 (Collaborative Computational Project, Number 4) software suite is a collection of programs and associated data and software libraries which can be used for macromolecular structure determination by X-ray crystallography. The suite is designed to be flexible, allowing users a number of methods of achieving their aims. The programs are from a wide variety of sources but are connected by a common infrastructure provided by standard file formats, data objects and graphical interfaces. Structure solution by macromolecular crystallo­graphy is becoming increasingly automated and the CCP4 suite includes several automation pipelines. After giving a brief description of the evolution of CCP4 over the last 30 years, an overview of the current suite is given. While detailed descriptions are given in the accompanying articles, here it is shown how the individual programs contribute to a complete software package.

9,516 citations


Journal ArticleDOI
23 Feb 2007-Cell
TL;DR: The surface of nucleosomes is studded with a multiplicity of modifications that can dictate the higher-order chromatin structure in which DNA is packaged and can orchestrate the ordered recruitment of enzyme complexes to manipulate DNA.
Abstract: The surface of nucleosomes is studded with a multiplicity of modifications. At least eight different classes have been characterized to date and many different sites have been identified for each class. Operationally, modifications function either by disrupting chromatin contacts or by affecting the recruitment of nonhistone proteins to chromatin. Their presence on histones can dictate the higher-order chromatin structure in which DNA is packaged and can orchestrate the ordered recruitment of enzyme complexes to manipulate DNA. In this way, histone modifications have the potential to influence many fundamental biological processes, some of which may be epigenetically inherited.

9,366 citations


Authors

Showing all 118293 results

NameH-indexPapersCitations
Albert Hofman2672530321405
Zhong Lin Wang2452529259003
Solomon H. Snyder2321222200444
Trevor W. Robbins2311137164437
George Davey Smith2242540248373
Nicholas J. Wareham2121657204896
Cyrus Cooper2041869206782
Eric B. Rimm196988147119
Martin White1962038232387
Simon D. M. White189795231645
Michael Rutter188676151592
George Efstathiou187637156228
Mark Hallett1861170123741
David H. Weinberg183700171424
Paul G. Richardson1831533155912
Network Information
Related Institutions (5)
University of Oxford

258.1K papers, 12.9M citations

98% related

University College London

210.6K papers, 9.8M citations

97% related

University of Bristol

113.1K papers, 4.9M citations

97% related

Imperial College London

209.1K papers, 9.3M citations

97% related

University of Birmingham

115.3K papers, 4.3M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2022186
202115,670
202015,347
201913,661
201812,548
201712,444

Top Attributes

Show by:

Institution's top 5 most impactful journals

Nature

4.7K papers, 693.3K citations

bioRxiv

3.6K papers, 17K citations

Social Science Research Network

3.2K papers, 75.5K citations

The Astrophysical Journal

1.9K papers, 244.2K citations