scispace - formally typeset


University of Central Florida

EducationOrlando, Florida, United States
About: University of Central Florida is a(n) education organization based out in Orlando, Florida, United States. It is known for research contribution in the topic(s): Laser & Population. The organization has 18822 authors who have published 48679 publication(s) receiving 1234422 citation(s). The organization is also known as: UCF.

More filters
Journal ArticleDOI
Abstract: This paper proposes unit root tests for dynamic heterogeneous panels based on the mean of individual unit root statistics. In particular it proposes a standardized t-bar test statistic based on the (augmented) Dickey–Fuller statistics averaged across the groups. Under a general setting this statistic is shown to converge in probability to a standard normal variate sequentially with T (the time series dimension) →∞, followed by N (the cross sectional dimension) →∞. A diagonal convergence result with T and N→∞ while N/T→k, k being a finite non-negative constant, is also conjectured. In the special case where errors in individual Dickey–Fuller (DF) regressions are serially uncorrelated a modified version of the standardized t-bar statistic is shown to be distributed as standard normal as N→∞ for a fixed T, so long as T>5 in the case of DF regressions with intercepts and T>6 in the case of DF regressions with intercepts and linear time trends. An exact fixed N and T test is also developed using the simple average of the DF statistics. Monte Carlo results show that if a large enough lag order is selected for the underlying ADF regressions, then the small sample performances of the t-bar test is reasonably satisfactory and generally better than the test proposed by Levin and Lin (Unpublished manuscript, University of California, San Diego, 1993).

11,149 citations

Journal ArticleDOI
Abstract: A sensitive single-beam technique for measuring both the nonlinear refractive index and nonlinear absorption coefficient for a wide variety of materials is reported. The authors describe the experimental details and present a comprehensive theoretical analysis including cases where nonlinear refraction is accompanied by nonlinear absorption. In these experiments, the transmittance of a sample is measured through a finite aperture in the far field as the sample is moved along the propagation path (z) of a focused Gaussian beam. The sign and magnitude of the nonlinear refraction are easily deduced from such a transmittance curve (Z-scan). Employing this technique, a sensitivity of better than lambda /300 wavefront distortion is achieved in n/sub 2/ measurements of BaF/sub 2/ using picosecond frequency-doubled Nd:YAG laser pulses. >

7,137 citations

Journal ArticleDOI
Abstract: Social exchange theory (SET) is one the most influential conceptual paradigms in organizational behavior. Despite its usefulness, theoretical ambiguities within SET remain. As a consequence, tests of the model, as well as its applications, tend to rely on an incompletely specified set of ideas. The authors address conceptual difficulties and highlight areas in need of additional research. In so doing, they pay special attention to four issues: (a) the roots of the conceptual ambiguities, (b) norms and rules of exchange, (c) nature of the resources being exchanged, and (d) social exchange relationships.

5,447 citations

Journal ArticleDOI
TL;DR: The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends to discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.
Abstract: The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends. Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns of both the object and the scene, nonrigid object structures, object-to-object and object-to-scene occlusions, and camera motion. Tracking is usually performed in the context of higher-level applications that require the location and/or shape of the object in every frame. Typically, assumptions are made to constrain the tracking problem in the context of a particular application. In this survey, we categorize the tracking methods on the basis of the object and motion representations used, provide detailed descriptions of representative methods in each category, and examine their pros and cons. Moreover, we discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.

5,085 citations

Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

4,756 citations


Showing all 18822 results

Gang Chen1673372149819
Kevin M. Huffenberger13840293452
Eduardo Salas12971162259
Akihisa Inoue126265293980
Allan H. MacDonald11992656221
Hagop S. Akiskal11856550869
Richard P. Van Duyne11640979671
Jun Wang106103149206
Mubarak Shah10661456738
Larry L. Hench10349155633
Michael Walsh10296342231
Wei Liu102292765228
Demetrios N. Christodoulides10070451093
Paul E. Spector9932552843
Eric A. Hoffman9980936891
Network Information
Related Institutions (5)
Georgia Institute of Technology

119K papers, 4.6M citations

92% related

University of Maryland, College Park

155.9K papers, 7.2M citations

92% related

Pennsylvania State University

196.8K papers, 8.3M citations

92% related

National University of Singapore

165.4K papers, 5.4M citations

92% related

University of Southern California

169.9K papers, 7.8M citations

91% related

No. of papers from the Institution in previous years