scispace - formally typeset
Search or ask a question

Showing papers by "University of Chicago published in 2016"


Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +1008 moreInstitutions (96)
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of $1.0 \times 10^{-21}$. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {\sigma}. The source lies at a luminosity distance of $410^{+160}_{-180}$ Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4} M_\odot$ and $29^{+4}_{-4} M_\odot$, and the final black hole mass is $62^{+4}_{-4} M_\odot$, with $3.0^{+0.5}_{-0.5} M_\odot c^2$ radiated in gravitational waves. All uncertainties define 90% credible intervals.These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

9,596 citations


Journal ArticleDOI
19 May 2016-Blood
TL;DR: The 2016 edition of the World Health Organization classification of tumors of the hematopoietic and lymphoid tissues represents a revision of the prior classification rather than an entirely new classification and attempts to incorporate new clinical, prognostic, morphologic, immunophenotypic, and genetic data that have emerged since the last edition.

7,147 citations


Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy3  +970 moreInstitutions (114)
TL;DR: This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.
Abstract: We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5 σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4+0.7−0.9×10−22. The inferred source-frame initial black hole masses are 14.2+8.3−3.7M⊙ and 7.5+2.3−2.3M⊙ and the final black hole mass is 20.8+6.1−1.7M⊙. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440+180−190 Mpc corresponding to a redshift 0.09+0.03−0.04. All uncertainties define a 90 % credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

3,448 citations


Journal ArticleDOI
TL;DR: Among patients with platinum-refractory, recurrent squamous-cell carcinoma of the head and neck, treatment with nivolumab resulted in longer overall survival than treatment with standard, single-agent therapy.
Abstract: BackgroundPatients with recurrent or metastatic squamous-cell carcinoma of the head and neck after platinum chemotherapy have a very poor prognosis and limited therapeutic options. Nivolumab, an anti–programmed death 1 (PD-1) monoclonal antibody, was assessed as treatment for this condition. MethodsIn this randomized, open-label, phase 3 trial, we assigned, in a 2:1 ratio, 361 patients with recurrent squamous-cell carcinoma of the head and neck whose disease had progressed within 6 months after platinum-based chemotherapy to receive nivolumab (at a dose of 3 mg per kilogram of body weight) every 2 weeks or standard, single-agent systemic therapy (methotrexate, docetaxel, or cetuximab). The primary end point was overall survival. Additional end points included progression-free survival, rate of objective response, safety, and patient-reported quality of life. ResultsThe median overall survival was 7.5 months (95% confidence interval [CI], 5.5 to 9.1) in the nivolumab group versus 5.1 months (95% CI, 4.0 to...

3,246 citations


Journal ArticleDOI
TL;DR: Treatment with atezolizumab resulted in a significantly improved RECIST v1.1 response rate, compared with a historical control overall response rate of 10%, and Exploratory analyses showed The Cancer Genome Atlas (TCGA) subtypes and mutation load to be independently predictive for response to atezolediazepine.

2,934 citations


Journal ArticleDOI
Peter Goldstraw1, Kari Chansky, John Crowley, Ramón Rami-Porta2, Hisao Asamura3, Wilfried Ernst Erich Eberhardt4, Andrew G. Nicholson1, Patti A. Groome5, Alan Mitchell, Vanessa Bolejack, David Ball6, David G. Beer7, Ricardo Beyruti8, Frank C. Detterbeck9, Wilfried Eberhardt4, John G. Edwards10, Françoise Galateau-Salle11, Dorothy Giroux12, Fergus V. Gleeson13, James Huang14, Catherine Kennedy15, Jhingook Kim16, Young Tae Kim17, Laura Kingsbury12, Haruhiko Kondo18, Mark Krasnik19, Kaoru Kubota20, Antoon Lerut21, Gustavo Lyons, Mirella Marino, Edith M. Marom22, Jan P. van Meerbeeck23, Takashi Nakano24, Anna K. Nowak25, Michael D Peake26, Thomas W. Rice27, Kenneth E. Rosenzweig28, Enrico Ruffini29, Valerie W. Rusch14, Nagahiro Saijo, Paul Van Schil23, Jean-Paul Sculier30, Lynn Shemanski12, Kelly G. Stratton12, Kenji Suzuki31, Yuji Tachimori32, Charles F. Thomas33, William D. Travis14, Ming-Sound Tsao34, Andrew T. Turrisi35, Johan Vansteenkiste21, Hirokazu Watanabe, Yi-Long Wu, Paul Baas36, Jeremy J. Erasmus22, Seiki Hasegawa24, Kouki Inai37, Kemp H. Kernstine38, Hedy L. Kindler39, Lee M. Krug14, Kristiaan Nackaerts21, Harvey I. Pass40, David C. Rice22, Conrad Falkson5, Pier Luigi Filosso29, Giuseppe Giaccone41, Kazuya Kondo42, Marco Lucchi43, Meinoshin Okumura44, Eugene H. Blackstone27, F. Abad Cavaco, E. Ansótegui Barrera, J. Abal Arca, I. Parente Lamelas, A. Arnau Obrer45, R. Guijarro Jorge45, D. Ball6, G.K. Bascom46, A. I. Blanco Orozco, M. A. González Castro, M.G. Blum, D. Chimondeguy, V. Cvijanovic47, S. Defranchi48, B. de Olaiz Navarro, I. Escobar Campuzano2, I. Macía Vidueira2, E. Fernández Araujo49, F. Andreo García49, Kwun M. Fong, G. Francisco Corral, S. Cerezo González, J. Freixinet Gilart, L. García Arangüena, S. García Barajas50, P. Girard, Tuncay Göksel, M. T. González Budiño51, G. González Casaurrán50, J. A. Gullón Blanco, J. Hernández Hernández, H. Hernández Rodríguez, J. Herrero Collantes, M. Iglesias Heras, J. M. Izquierdo Elena, Erik Jakobsen, S. Kostas52, P. León Atance, A. Núñez Ares, M. Liao, M. Losanovscky, G. Lyons, R. Magaroles53, L. De Esteban Júlvez53, M. Mariñán Gorospe, Brian C. McCaughan15, Catherine J. Kennedy15, R. Melchor Íñiguez54, L. Miravet Sorribes, S. Naranjo Gozalo, C. Álvarez de Arriba, M. Núñez Delgado, J. Padilla Alarcón, J. C. Peñalver Cuesta, Jongsun Park16, H. Pass40, M. J. Pavón Fernández, Mara Rosenberg, Enrico Ruffini29, V. Rusch14, J. Sánchez de Cos Escuín, A. Saura Vinuesa, M. Serra Mitjans, Trond Eirik Strand, Dragan Subotic, S.G. Swisher22, Ricardo Mingarini Terra8, Charles R. Thomas33, Kurt G. Tournoy55, P. Van Schil23, M. Velasquez, Y.L. Wu, K. Yokoi 
Imperial College London1, University of Barcelona2, Keio University3, University of Duisburg-Essen4, Queen's University5, Peter MacCallum Cancer Centre6, University of Michigan7, University of São Paulo8, Yale University9, Northern General Hospital10, University of Caen Lower Normandy11, Fred Hutchinson Cancer Research Center12, University of Oxford13, Memorial Sloan Kettering Cancer Center14, University of Sydney15, Sungkyunkwan University16, Seoul National University17, Kyorin University18, University of Copenhagen19, Nippon Medical School20, Katholieke Universiteit Leuven21, University of Texas MD Anderson Cancer Center22, University of Antwerp23, Hyogo College of Medicine24, University of Western Australia25, Glenfield Hospital26, Cleveland Clinic27, Icahn School of Medicine at Mount Sinai28, University of Turin29, Université libre de Bruxelles30, Juntendo University31, National Cancer Research Institute32, Mayo Clinic33, University of Toronto34, Sinai Grace Hospital35, Netherlands Cancer Institute36, Hiroshima University37, City of Hope National Medical Center38, University of Chicago39, New York University40, Georgetown University41, University of Tokushima42, University of Pisa43, Osaka University44, University of Valencia45, Good Samaritan Hospital46, Military Medical Academy47, Fundación Favaloro48, Autonomous University of Barcelona49, Complutense University of Madrid50, University of Oviedo51, National and Kapodistrian University of Athens52, Rovira i Virgili University53, Autonomous University of Madrid54, Ghent University55
TL;DR: The methods used to evaluate the resultant Stage groupings and the proposals put forward for the 8th edition of the TNM Classification for lung cancer due to be published late 2016 are described.

2,826 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to reduce the uncertainty in the local value of the Hubble constant from 3.3% to 2.4%.
Abstract: We use the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to reduce the uncertainty in the local value of the Hubble constant from 3.3% to 2.4%. The bulk of this improvement comes from new near-infrared (NIR) observations of Cepheid variables in 11 host galaxies of recent type Ia supernovae (SNe Ia), more than doubling the sample of reliable SNe Ia having a Cepheid-calibrated distance to a total of 19, these in turn leverage the magnitude-redshift relation based on ∼300 SNe Ia at z < 0.15. All 19 hosts as well as the megamaser system NGC 4258 have been observed with WFC3 in the optical and NIR, thus nullifying cross-instrument zeropoint errors in the relative distance estimates from Cepheids. Other noteworthy improvements include a 33% reduction in the systematic uncertainty in the maser distance to NGC 4258, a larger sample of Cepheids in the Large Magellanic Cloud (LMC), a more robust distance to the LMC based on late-type detached eclipsing binaries (DEBs), HST observations of Cepheids in M31, and new HST-based trigonometric parallaxes for Milky Way (MW) Cepheids. We consider four geometric distance calibrations of Cepheids: (i) megamasers in NGC 4258, (ii) 8 DEBs in the LMC, (iii) 15 MW Cepheids with parallaxes measured with HST/FGS, HST/WFC3 spatial scanning and/or Hipparcos, and (iv) 2 DEBs in M31. The Hubble constant from each is 72.25 ± 2.51, 72.04 ± 2.67, 76.18 ± 2.37, and 74.50 ± 3.27 km s(−)(1) Mpc(−)(1), respectively. Our best estimate of H (0) = 73.24 ± 1.74 km s(−)(1) Mpc(−)(1) combines the anchors NGC 4258, MW, and LMC, yielding a 2.4% determination (all quoted uncertainties include fully propagated statistical and systematic components). This value is 3.4σ higher than 66.93 ± 0.62 km s(−)(1) Mpc(−)(1) predicted by ΛCDM with 3 neutrino flavors having a mass of 0.06 eV and the new Planck data, but the discrepancy reduces to 2.1σ relative to the prediction of 69.3 ± 0.7 km s(−)(1) Mpc(−)(1) based on the comparably precise combination of WMAP+ACT+SPT+BAO observations, suggesting that systematic uncertainties in CMB radiation measurements may play a role in the tension. If we take the conflict between Planck high-redshift measurements and our local determination of H (0) at face value, one plausible explanation could involve an additional source of dark radiation in the early universe in the range of ΔN (eff) ≈ 0.4–1. We anticipate further significant improvements in H (0) from upcoming parallax measurements of long-period MW Cepheids.

2,228 citations


Journal ArticleDOI
13 Sep 2016-JAMA
TL;DR: The Second Panel on Cost-Effectiveness in Health and Medicine reviewed the current status of the field of cost-effectiveness analysis and developed a new set of recommendations, including the recommendation to perform analyses from 2 reference case perspectives and to provide an impact inventory to clarify included consequences.
Abstract: Importance Since publication of the report by the Panel on Cost-Effectiveness in Health and Medicine in 1996, researchers have advanced the methods of cost-effectiveness analysis, and policy makers have experimented with its application. The need to deliver health care efficiently and the importance of using analytic techniques to understand the clinical and economic consequences of strategies to improve health have increased in recent years. Objective To review the state of the field and provide recommendations to improve the quality of cost-effectiveness analyses. The intended audiences include researchers, government policy makers, public health officials, health care administrators, payers, businesses, clinicians, patients, and consumers. Design In 2012, the Second Panel on Cost-Effectiveness in Health and Medicine was formed and included 2 co-chairs, 13 members, and 3 additional members of a leadership group. These members were selected on the basis of their experience in the field to provide broad expertise in the design, conduct, and use of cost-effectiveness analyses. Over the next 3.5 years, the panel developed recommendations by consensus. These recommendations were then reviewed by invited external reviewers and through a public posting process. Findings The concept of a “reference case” and a set of standard methodological practices that all cost-effectiveness analyses should follow to improve quality and comparability are recommended. All cost-effectiveness analyses should report 2 reference case analyses: one based on a health care sector perspective and another based on a societal perspective. The use of an “impact inventory,” which is a structured table that contains consequences (both inside and outside the formal health care sector), intended to clarify the scope and boundaries of the 2 reference case analyses is also recommended. This special communication reviews these recommendations and others concerning the estimation of the consequences of interventions, the valuation of health outcomes, and the reporting of cost-effectiveness analyses. Conclusions and Relevance The Second Panel reviewed the current status of the field of cost-effectiveness analysis and developed a new set of recommendations. Major changes include the recommendation to perform analyses from 2 reference case perspectives and to provide an impact inventory to clarify included consequences.

1,995 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy1  +976 moreInstitutions (107)
TL;DR: It is found that the final remnant's mass and spin, as determined from the low-frequency and high-frequency phases of the signal, are mutually consistent with the binary black-hole solution in general relativity.
Abstract: The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of a compact-object binary in the large-velocity, highly nonlinear regime, and to witness the final merger of the binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations to determine whether GW150914 is consistent with a binary black-hole merger in general relativity. We find that the final remnant’s mass and spin, as determined from the low-frequency (inspiral) and high-frequency (postinspiral) phases of the signal, are mutually consistent with the binary black-hole solution in general relativity. Furthermore, the data following the peak of GW150914 are consistent with the least-damped quasinormal mode inferred from the mass and spin of the remnant black hole. By using waveform models that allow for parametrized general-relativity violations during the inspiral and merger phases, we perform quantitative tests on the gravitational-wave phase in the dynamical regime and we determine the first empirical bounds on several high-order post-Newtonian coefficients. We constrain the graviton Compton wavelength, assuming that gravitons are dispersed in vacuum in the same way as particles with mass, obtaining a 90%-confidence lower bound of 1013 km. In conclusion, within our statistical uncertainties, we find no evidence for violations of general relativity in the genuinely strong-field regime of gravity.

Journal ArticleDOI
TL;DR: This review discusses efforts to create next-generation materials via bottom-up organization of nanocrystals with preprogrammed functionality and self-assembly instructions, and explores the unique possibilities offered by leveraging nontraditional surface chemistries and assembly environments to control superlattice structure and produce nonbulk assemblies.
Abstract: Chemical methods developed over the past two decades enable preparation of colloidal nanocrystals with uniform size and shape. These Brownian objects readily order into superlattices. Recently, the range of accessible inorganic cores and tunable surface chemistries dramatically increased, expanding the set of nanocrystal arrangements experimentally attainable. In this review, we discuss efforts to create next-generation materials via bottom-up organization of nanocrystals with preprogrammed functionality and self-assembly instructions. This process is often driven by both interparticle interactions and the influence of the assembly environment. The introduction provides the reader with a practical overview of nanocrystal synthesis, self-assembly, and superlattice characterization. We then summarize the theory of nanocrystal interactions and examine fundamental principles governing nanocrystal self-assembly from hard and soft particle perspectives borrowed from the comparatively established fields of micro...

Journal ArticleDOI
TL;DR: Pembrolizumab was well tolerated and demonstrated clinically meaningful antitumour activity in recurrent or metastatic squamous cell carcinoma of the head and neck, supporting further study of pembrolIZumab as anticancer therapy for advancedHead and neck cancers.
Abstract: Summary Background Patients with recurrent or metastatic squamous cell carcinoma of the head and neck have few treatment options. We aimed to assess the safety, tolerability, and antitumour activity of pembrolizumab, a humanised anti-programmed death receptor 1 (PD-1) antibody, in patients with PD-L1-positive recurrent or metastatic squamous cell carcinoma of the head and neck. Methods This study was an open-label, multicentre, phase 1b trial of patients with recurrent or metastatic squamous cell carcinoma of the head and neck. Patients were eligible for enrolment if they were aged 18 years or older, had a confirmed diagnosis of recurrent or metastatic squamous cell carcinoma of the head and neck, and had any level of PD-L1 expression (ie, at least 1% of tumour cells or stroma that were PD-L1-positive by immunohistochemistry). Patients received pembrolizumab 10 mg/kg intravenously every 2 weeks. Primary outcomes were safety in the per-protocol population and the proportion of patients with centrally reviewed overall response per Response Evaluation Criteria In Solid Tumors (RECIST, version 1.1). Overall response was analysed in the full analysis set, which was defined as all patients who had received at least one dose of pembrolizumab, had measurable disease at baseline, and one post-baseline scan or patients without a post-baseline scan who discontinued therapy because of disease progression or a drug-related adverse event. The study is registered with ClinicalTrials.gov, number NCT01848834 and is ongoing, but no longer enrolling patients. Findings Of the 104 patients screened between June 7, 2013, and Oct 3, 2013, 81 (78%) were PD-L1-positive. Of these, 60 patients with PD-L1-positive squamous cell carcinoma of the head and neck were enrolled and treated: 23 (38%) were HPV-positive and 37 (62%) were HPV-negative. Pembrolizumab was well tolerated, with 10 (17%) of 60 patients having grade 3–4 drug-related adverse events, the most common of which were increases in alanine aminotransferase and in aspartate aminotransferase, and hyponatraemia, each occurring in two of 60 patients; one patient developed a grade 3 drug-related rash. 27 (45%) of 60 patients experienced a serious adverse event. There were no drug-related deaths. The proportion of patients with an overall response by central imaging review was 18% (eight of 45 patients; 95% CI 8–32) in all patients and was 25% (four of 16 patients; 7–52) in HPV-positive patients and 14% (four of 29 patients; 4–32) in HPV-negative patients. Interpretation Pembrolizumab was well tolerated and demonstrated clinically meaningful antitumour activity in recurrent or metastatic squamous cell carcinoma of the head and neck, supporting further study of pembrolizumab as anticancer therapy for advanced head and neck cancers. Funding Merck & Co.

Journal ArticleDOI
TL;DR: The role of surface ligands in tuning and rationally designing properties of functional nanomaterials and their importance for biomedical and optoelectronic applications is focused on and an assessment of application-targeted surface engineering is concluded.
Abstract: All nanomaterials share a common feature of large surface-to-volume ratio, making their surfaces the dominant player in many physical and chemical processes. Surface ligands - molecules that bind to the surface - are an essential component of nanomaterial synthesis, processing and application. Understanding the structure and properties of nanoscale interfaces requires an intricate mix of concepts and techniques borrowed from surface science and coordination chemistry. Our Review elaborates these connections and discusses the bonding, electronic structure and chemical transformations at nanomaterial surfaces. We specifically focus on the role of surface ligands in tuning and rationally designing properties of functional nanomaterials. Given their importance for biomedical (imaging, diagnostics and therapeutics) and optoelectronic (light-emitting devices, transistors, solar cells) applications, we end with an assessment of application-targeted surface engineering.

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy3  +978 moreInstitutions (112)
TL;DR: The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers as discussed by the authors.
Abstract: The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper we present full results from a search for binary black hole merger signals with total masses up to 100M⊙ and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5σ over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance, which has a 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations we infer stellar-mass binary black hole merger rates lying in the range 9−240Gpc−3yr−1. These observations are beginning to inform astrophysical predictions of binary black hole formation rates, and indicate that future observing runs of the Advanced detector network will yield many more gravitational wave detections.

Journal ArticleDOI
Swapan Mallick1, Swapan Mallick2, Swapan Mallick3, Heng Li3, Mark Lipson2, Iain Mathieson2, Melissa Gymrek, Fernando Racimo4, Mengyao Zhao2, Mengyao Zhao3, Mengyao Zhao1, Niru Chennagiri3, Niru Chennagiri2, Niru Chennagiri1, Susanne Nordenfelt3, Susanne Nordenfelt1, Susanne Nordenfelt2, Arti Tandon2, Arti Tandon3, Pontus Skoglund2, Pontus Skoglund3, Iosif Lazaridis3, Iosif Lazaridis2, Sriram Sankararaman3, Sriram Sankararaman2, Sriram Sankararaman5, Qiaomei Fu6, Qiaomei Fu3, Qiaomei Fu2, Nadin Rohland2, Nadin Rohland3, Gabriel Renaud7, Yaniv Erlich8, Thomas Willems9, Carla Gallo10, Jeffrey P. Spence4, Yun S. Song4, Yun S. Song11, Giovanni Poletti10, Francois Balloux12, George van Driem13, Peter de Knijff14, Irene Gallego Romero15, Aashish R. Jha16, Doron M. Behar17, Claudio M. Bravi18, Cristian Capelli19, Tor Hervig20, Andrés Moreno-Estrada, Olga L. Posukh21, Elena Balanovska, Oleg Balanovsky22, Sena Karachanak-Yankova23, Hovhannes Sahakyan24, Hovhannes Sahakyan17, Draga Toncheva23, Levon Yepiskoposyan24, Chris Tyler-Smith25, Yali Xue25, M. Syafiq Abdullah26, Andres Ruiz-Linares12, Cynthia M. Beall27, Anna Di Rienzo16, Choongwon Jeong16, Elena B. Starikovskaya, Ene Metspalu17, Ene Metspalu28, Jüri Parik17, Richard Villems17, Richard Villems28, Richard Villems29, Brenna M. Henn30, Ugur Hodoglugil31, Robert W. Mahley32, Antti Sajantila33, George Stamatoyannopoulos34, Joseph Wee, Rita Khusainova35, Elza Khusnutdinova35, Sergey Litvinov35, Sergey Litvinov17, George Ayodo36, David Comas37, Michael F. Hammer38, Toomas Kivisild39, Toomas Kivisild17, William Klitz, Cheryl A. Winkler40, Damian Labuda41, Michael J. Bamshad34, Lynn B. Jorde42, Sarah A. Tishkoff11, W. Scott Watkins42, Mait Metspalu17, Stanislav Dryomov, Rem I. Sukernik43, Lalji Singh5, Lalji Singh44, Kumarasamy Thangaraj44, Svante Pääbo7, Janet Kelso7, Nick Patterson3, David Reich3, David Reich1, David Reich2 
13 Oct 2016-Nature
TL;DR: It is demonstrated that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.
Abstract: Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.

Journal ArticleDOI
TL;DR: This phase Ib study describes preliminary evidence of clinical activity and a potentially acceptable safety profile of pembrolizumab given every 2 weeks to patients with heavily pretreated, advanced TNBC.
Abstract: PurposeImmune checkpoint inhibition has been demonstrated to be an effective anticancer strategy. Several lines of evidence support the study of immunotherapy in triple-negative breast cancer (TNBC). We assessed the safety and antitumor activity of the programmed cell death protein 1 (PD-1) inhibitor pembrolizumab in patients with advanced TNBC.MethodsKEYNOTE-012 (ClinicalTrials.gov identifier: NCT01848834) was a multicenter, nonrandomized phase Ib trial of single-agent pembrolizumab given intravenously at 10 mg/kg every 2 weeks to patients with advanced PD-L1–positive (expression in stroma or ≥ 1% of tumor cells by immunohistochemistry) TNBC, gastric cancer, urothelial cancer, and head and neck cancer. This report focuses on the TNBC cohort.ResultsAmong 111 patients with TNBC whose tumor samples were screened for PD-L1 expression, 58.6% had PD-L1–positive tumors. Thirty-two women (median age, 50.5 years; range, 29 to 72 years) were enrolled and assessed for safety and antitumor activity. The median numbe...

Journal ArticleDOI
Aysu Okbay1, Jonathan P. Beauchamp2, Mark Alan Fontana3, James J. Lee4  +293 moreInstitutions (81)
26 May 2016-Nature
TL;DR: In this article, the results of a genome-wide association study (GWAS) for educational attainment were reported, showing that single-nucleotide polymorphisms associated with educational attainment disproportionately occur in genomic regions regulating gene expression in the fetal brain.
Abstract: Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases.

Journal ArticleDOI
TL;DR: It is demonstrated that loss of PTEN in tumor cells in preclinical models of melanoma inhibits T cell-mediated tumor killing and decreases T-cell trafficking into tumors, and support the rationale to explore combinations of immunotherapies and PI3K-AKT pathway inhibitors.
Abstract: T cell–mediated immunotherapies are promising cancer treatments. However, most patients still fail to respond to these therapies. The molecular determinants of immune resistance are poorly understood. We show that loss of PTEN in tumor cells in preclinical models of melanoma inhibits T cell–mediated tumor killing and decreases T-cell trafficking into tumors. In patients, PTEN loss correlates with decreased T-cell infiltration at tumor sites, reduced likelihood of successful T-cell expansion from resected tumors, and inferior outcomes with PD-1 inhibitor therapy. PTEN loss in tumor cells increased the expression of immunosuppressive cytokines, resulting in decreased T-cell infiltration in tumors, and inhibited autophagy, which decreased T cell–mediated cell death. Treatment with a selective PI3Kβ inhibitor improved the efficacy of both anti–PD-1 and anti–CTLA-4 antibodies in murine models. Together, these findings demonstrate that PTEN loss promotes immune resistance and support the rationale to explore combinations of immunotherapies and PI3K–AKT pathway inhibitors. Significance: This study adds to the growing evidence that oncogenic pathways in tumors can promote resistance to the antitumor immune response. As PTEN loss and PI3K–AKT pathway activation occur in multiple tumor types, the results support the rationale to further evaluate combinatorial strategies targeting the PI3K–AKT pathway to increase the efficacy of immunotherapy. Cancer Discov; 6(2); 202–16. ©2015 AACR. See related commentary by Rizvi and Chan, [p. 128][1] . This article is highlighted in the In This Issue feature, [p. 109][2] [1]: /lookup/volpage/6/128?iss=2 [2]: /lookup/volpage/6/109?iss=2

Journal ArticleDOI
TL;DR: The enormous health loss attributable to viral hepatitis, and the availability of effective vaccines and treatments, suggests an important opportunity to improve public health.

Journal ArticleDOI
TL;DR: The rate of complete remission was higher with inotuzumab ozogamicin than with standard therapy, and a higher percentage of patients in the inotzumabozogamic in group had results below the threshold for minimal residual disease.
Abstract: BackgroundThe prognosis for adults with relapsed acute lymphoblastic leukemia is poor. We sought to determine whether inotuzumab ozogamicin, an anti-CD22 antibody conjugated to calicheamicin, results in better outcomes in patients with relapsed or refractory acute lymphoblastic leukemia than does standard therapy. MethodsIn this phase 3 trial, we randomly assigned adults with relapsed or refractory acute lymphoblastic leukemia to receive either inotuzumab ozogamicin (inotuzumab ozogamicin group) or standard intensive chemotherapy (standard-therapy group). The primary end points were complete remission (including complete remission with incomplete hematologic recovery) and overall survival. ResultsOf the 326 patients who underwent randomization, the first 218 (109 in each group) were included in the primary intention-to-treat analysis of complete remission. The rate of complete remission was significantly higher in the inotuzumab ozogamicin group than in the standard-therapy group (80.7% [95% confidence in...

Journal ArticleDOI
TL;DR: The concept of no longer clinically benefiting is introduced to underscore the distinction between first evidence of progression and the clinical need to terminate or change treatment, and the importance of documenting progression in existing lesions as distinct from the development of new lesions.
Abstract: PurposeEvolving treatments, disease phenotypes, and biology, together with a changing drug development environment, have created the need to revise castration-resistant prostate cancer (CRPC) clinical trial recommendations to succeed those from prior Prostate Cancer Clinical Trials Working Groups.MethodsAn international expert committee of prostate cancer clinical investigators (the Prostate Cancer Clinical Trials Working Group 3 [PCWG3]) was reconvened and expanded and met in 2012-2015 to formulate updated criteria on the basis of emerging trial data and validation studies of the Prostate Cancer Clinical Trials Working Group 2 recommendations.ResultsPCWG3 recommends that baseline patient assessment include tumor histology, detailed records of prior systemic treatments and responses, and a detailed reporting of disease subtypes based on an anatomic pattern of metastatic spread. New recommendations for trial outcome measures include the time to event end point of symptomatic skeletal events, as well as tim...

Journal ArticleDOI
Nabila Aghanim1, Monique Arnaud2, M. Ashdown3, J. Aumont1  +291 moreInstitutions (73)
TL;DR: In this article, the authors present the Planck 2015 likelihoods, statistical descriptions of the 2-point correlation functions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties.
Abstract: This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlationfunctions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties, both instrumental and astrophysical in nature. They are based on the same hybrid approach used for the previous release, i.e., a pixel-based likelihood at low multipoles (l< 30) and a Gaussian approximation to the distribution of cross-power spectra at higher multipoles. The main improvements are the use of more and better processed data and of Planck polarization information, along with more detailed models of foregrounds and instrumental uncertainties. The increased redundancy brought by more than doubling the amount of data analysed enables further consistency checks and enhanced immunity to systematic effects. It also improves the constraining power of Planck, in particular with regard to small-scale foreground properties. Progress in the modelling of foreground emission enables the retention of a larger fraction of the sky to determine the properties of the CMB, which also contributes to the enhanced precision of the spectra. Improvements in data processing and instrumental modelling further reduce uncertainties. Extensive tests establish the robustness and accuracy of the likelihood results, from temperature alone, from polarization alone, and from their combination. For temperature, we also perform a full likelihood analysis of realistic end-to-end simulations of the instrumental response to the sky, which were fed into the actual data processing pipeline; this does not reveal biases from residual low-level instrumental systematics. Even with the increase in precision and robustness, the ΛCDM cosmological model continues to offer a very good fit to the Planck data. The slope of the primordial scalar fluctuations, n_s, is confirmed smaller than unity at more than 5σ from Planck alone. We further validate the robustness of the likelihood results against specific extensions to the baseline cosmology, which are particularly sensitive to data at high multipoles. For instance, the effective number of neutrino species remains compatible with the canonical value of 3.046. For this first detailed analysis of Planck polarization spectra, we concentrate at high multipoles on the E modes, leaving the analysis of the weaker B modes to future work. At low multipoles we use temperature maps at all Planck frequencies along with a subset of polarization data. These data take advantage of Planck’s wide frequency coverage to improve the separation of CMB and foreground emission. Within the baseline ΛCDM cosmology this requires τ = 0.078 ± 0.019 for the reionization optical depth, which is significantly lower than estimates without the use of high-frequency data for explicit monitoring of dust emission. At high multipoles we detect residual systematic errors in E polarization, typically at the μK^2 level; we therefore choose to retain temperature information alone for high multipoles as the recommended baseline, in particular for testing non-minimal models. Nevertheless, the high-multipole polarization spectra from Planck are already good enough to enable a separate high-precision determination of the parameters of the ΛCDM model, showing consistency with those established independently from temperature information alone.

Journal ArticleDOI
26 Aug 2016-Science
TL;DR: Recent progress in tailoring and combining quantum dots to build electronic and optoelectronic devices and new ligand chemistries and matrix materials have been reported that provide freedom to control the dynamics of excitons and charge carriers and to design device interfaces are reviewed.
Abstract: BACKGROUND The Information Age was founded on the semiconductor revolution, marked by the growth of high-purity semiconductor single crystals. The resultant design and fabrication of electronic devices exploits our ability to control the concentration, motion, and dynamics of charge carriers in the bulk semiconductor solid state. Our desire to introduce electronics everywhere is fueled by opportunities to create intelligent and enabling devices for the information, communication, consumer product, health, and energy sectors. This demand for ubiquitous electronics is spurring the design of materials that exhibit engineered physical properties and that can enable new fabrication methods for low-cost, large-area, and flexible devices. Semiconductors, which are at the heart of electronics and optoelectronics, come with high demands on chemical purity and structural perfection. Alternatives to silicon technology are expected to combine the electronic and optical properties of inorganic semiconductors (high charge carrier mobility, precise n- and p-type doping, and the ability to engineer the band gap energy) with the benefits of additive device manufacturing: low cost, large area, and the use of solution-based fabrication techniques. Along these lines, colloidal semiconductor quantum dots (QDs), which are nanoscale crystals of analogous bulk semiconductor crystals, offer a powerful platform for device engineers. Colloidal QDs may be tailored in size, shape, and composition and their surfaces functionalized with molecular ligands of diverse chemistry. At the nanoscale (typically 2 to 20 nm), quantum and dielectric confinement effects give rise to the prized size-, shape-, and composition-tunable electronic and optical properties of QDs. Surface ligands enable the stabilization of QDs in the form of colloids, allowing their bottom-up assembly into QD solids. The physical properties of QD solids can be designed by selecting the characteristics of the individual QD building blocks and by controlling the electronic communication between the QDs in the solid state. These QD solids can be engineered with application-specific electronic and optoelectronic properties for the large-area, solution-based assembly of devices. ADVANCES The large surface-to-volume ratio of QDs places a substantial importance on the composition and structure of the surface in defining the physical properties that govern the concentration, motion, and dynamics of excitations and charge carriers in QD solids. Recent studies have shown pathways to passivate uncoordinated atoms at the QD surface that act to trap and scatter charge carriers. Surface atoms, ligands, and ions can serve as dopants to control the electron affinity of QD solids. Surface ligands and surrounding matrices control the barriers to electronic, excitonic, and thermal transport between QDs and between QDs and matrices. New ligand chemistries and matrix materials have been reported that provide freedom to control the dynamics of excitons and charge carriers and to design device interfaces. These advances in engineering the chemical and physical properties of the QD surface have been translated into recent achievements of high-mobility transistors and circuits, high-quantum-yield photodetectors and light-emitting devices, and high-efficiency photovoltaic devices. OUTLOOK The dominant role and dynamic nature of the QD surface, and the strong motive to build novel QD devices, will drive the exploration of new surface chemistries and matrix materials, processes for their assembly and integration with other materials in devices, and measurements and simulations with which to map the relationship between surface chemistry and materials and device properties. Challenges remain to achieve full control over the carrier type, concentration, and mobility in the QD channel and the barriers and traps at device interfaces that limit the gain and speed of QD electronics. Surface chemistries that allow for both long carrier lifetime and high carrier mobility and the freedom to engineer the bandgap and band alignment of QDs and other device layers are needed to exploit physics particular to QDs and to advance device architectures that contribute to improving the performance of QD optoelectronics. The importance of thermal transport in QD solids and their devices is an essential emerging topic that promises to become of greater importance as we develop QD devices.

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +984 moreInstitutions (116)
TL;DR: The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity.
Abstract: On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterise the properties of the source and its parameters. The data around the time of the event were analysed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of $36^{+5}_{-4} M_\odot$ and $29^{+4}_{-4} M_\odot$ (for each parameter we report the median value and the range of the 90% credible interval). The dimensionless spin magnitude of the more massive black hole is bound to be $0.7$ (at 90% probability). The luminosity distance to the source is $410^{+160}_{-180}$ Mpc, corresponding to a redshift $0.09^{+0.03}_{-0.04}$ assuming standard cosmology. The source location is constrained to an annulus section of $590$ deg$^2$, primarily in the southern hemisphere. The binary merges into a black hole of $62^{+4}_{-4} M_\odot$ and spin $0.67^{+0.05}_{-0.07}$. This black hole is significantly more massive than any other known in the stellar-mass regime.

Journal ArticleDOI
11 Jul 2016-Nature
TL;DR: In this paper, the authors performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing for 12,940 individuals from five ancestry groups.
Abstract: The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.

Journal ArticleDOI
TL;DR: An analysis of all data taken by the BICEP2 and Keck Array cosmic microwave background (CMB) polarization experiments up to and including the 2014 observing season yields an upper limit r_{0.05}<0.09 at 95% confidence, which is robust to variations explored in analysis and priors.
Abstract: We present results from an analysis of all data taken by the BICEP2 and Keck Array cosmic microwave background (CMB) polarization experiments up to and including the 2014 observing season. This includes the first Keck Array observations at 95 GHz. The maps reach a depth of 50 nK deg in Stokes Q and U in the 150 GHz band and 127 nK deg in the 95 GHz band. We take auto- and cross-spectra between these maps and publicly available maps from WMAP and Planck at frequencies from 23 to 353 GHz. An excess over lensed ΛCDM is detected at modest significance in the 95×150 BB spectrum, and is consistent with the dust contribution expected from our previous work. No significant evidence for synchrotron emission is found in spectra such as 23×95, or for correlation between the dust and synchrotron sky patterns in spectra such as 23×353. We take the likelihood of all the spectra for a multicomponent model including lensed ΛCDM, dust, synchrotron, and a possible contribution from inflationary gravitational waves (as parametrized by the tensor-to-scalar ratio r ) using priors on the frequency spectral behaviors of dust and synchrotron emission from previous analyses of WMAP and Planck data in other regions of the sky. This analysis yields an upper limit r_(0.05) <0.09 at 95% confidence, which is robust to variations explored in analysis and priors. Combining these B-mode results with the (more model-dependent) constraints from Planck analysis of CMB temperature plus baryon acoustic oscillations and other data yields a combined limit r_(0.05) <0.07 at 95% confidence. These are the strongest constraints to date on inflationary gravitational waves.

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +301 moreInstitutions (72)
TL;DR: In this paper, the implications of Planck data for models of dark energy (DE) and modified gravity (MG) beyond the standard cosmological constant scenario were studied, and it was shown that the density of DE at early times has to be below 2% of the critical density, even when forced to play a role for z < 50.
Abstract: We study the implications of Planck data for models of dark energy (DE) and modified gravity (MG) beyond the standard cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansions of the equation of state w(a), as well as principal component analysis and parameterizations related to the potential of a minimally coupled DE scalar field. When estimating the density of DE at early times, we significantly improve present constraints and find that it has to be below ~2% (at 95% confidence) of the critical density, even when forced to play a role for z < 50 only. We then move to general parameterizations of the DE or MG perturbations that encompass both effective field theories and the phenomenology of gravitational potentials in MG models. Lastly, we test a range of specific models, such as k-essence, f(R) theories, and coupled DE. In addition to the latest Planck data, for our main analyses, we use background constraints from baryonic acoustic oscillations, type-Ia supernovae, and local measurements of the Hubble constant. We further show the impact of measurements of the cosmological perturbations, such as redshift-space distortions and weak gravitational lensing. These additional probes are important tools for testing MG models and for breaking degeneracies that are still present in the combination of Planck and background data sets. All results that include only background parameterizations (expansion of the equation of state, early DE, general potentials in minimally-coupled scalar fields or principal component analysis) are in agreement with ΛCDM. When testing models that also change perturbations (even when the background is fixed to ΛCDM), some tensions appear in a few scenarios: the maximum one found is ~2σ for Planck TT+lowP when parameterizing observables related to the gravitational potentials with a chosen time dependence; the tension increases to, at most, 3σ when external data sets are included. It however disappears when including CMB lensing.

Journal ArticleDOI
23 Jun 2016-Nature
TL;DR: High-precision numerical simulations of the formation of binary black holes via the evolution of isolated binary stars are reported, providing a framework within which to interpret the first gravitational-wave source, GW150914, and to predict the properties of subsequent binary-black-hole gravitational- wave events.
Abstract: Numerical simulations of the formation of binary black holes provide a framework within which to interpret the recent detection of the first gravitational-wave source and to predict the properties of subsequent binary-black-hole gravitational-wave events; the calculations predict detections of about 1,000 black-hole mergers per year once gravitational-wave observatories reach full sensitivity. Krzysztof Belczynski et al. present numerical simulations of the formation of binary black holes that provide a framework for interpreting the recent detection of the first gravitational-wave source (known as GW150914) — a merger of two massive black holes. Their models imply that these events take place in an environment where the metallicity is less than 10 per cent of that of the Sun, and that the progenitors are stars with initial masses of 40–100 solar masses that interact through mass transfer and a common-envelope phase. The calculations predict detections of about a thousand black-hole mergers per year once gravitational-wave observatories reach full sensitivity. The merger of two massive (about 30 solar masses) black holes has been detected in gravitational waves1. This discovery validates recent predictions2,3,4 that massive binary black holes would constitute the first detection. Previous calculations, however, have not sampled the relevant binary-black-hole progenitors—massive, low-metallicity binary stars—with sufficient accuracy nor included sufficiently realistic physics to enable robust predictions to better than several orders of magnitude5,6,7,8,9,10. Here we report high-precision numerical simulations of the formation of binary black holes via the evolution of isolated binary stars, providing a framework within which to interpret the first gravitational-wave source, GW150914, and to predict the properties of subsequent binary-black-hole gravitational-wave events. Our models imply that these events form in an environment in which the metallicity is less than ten per cent of solar metallicity, and involve stars with initial masses of 40–100 solar masses that interact through mass transfer and a common-envelope phase. These progenitor stars probably formed either about 2 billion years or, with a smaller probability, 11 billion years after the Big Bang. Most binary black holes form without supernova explosions, and their spins are nearly unchanged since birth, but do not have to be parallel. The classical field formation of binary black holes we propose, with low natal kicks (the velocity of the black hole at birth) and restricted common-envelope evolution, produces approximately 40 times more binary-black-holes mergers than do dynamical formation channels involving globular clusters11; our predicted detection rate of these mergers is comparable to that from homogeneous evolution channels12,13,14,15. Our calculations predict detections of about 1,000 black-hole mergers per year with total masses of 20–80 solar masses once second-generation ground-based gravitational-wave observatories reach full sensitivity.

Journal ArticleDOI
TL;DR: In this population of patients with recurrent or metastatic PD-L1-positive gastric cancer, pembrolizumab had a manageable toxicity profile and promising antitumour activity, warranting further study in phase 2 and 3 trials.
Abstract: Summary Background Expression of PD-L1 has been shown to be upregulated in some patients with gastric cancer. As part of the phase 1b KEYNOTE-012 study, we aimed to assess the safety and activity of the anti-PD-1 antibody pembrolizumab in patients with PD-L1-positive recurrent or metastatic adenocarcinoma of the stomach or gastro-oesophageal junction. Methods This study was a multicentre, open-label, phase 1b trial done at 13 cancer research centres in the USA, Israel, Japan, South Korea, and Taiwan. We enrolled patients with PD-L1-positive recurrent or metastatic adenocarcinoma of the stomach or gastro-oesophageal junction. Patients received intravenous pembrolizumab at 10 mg/kg once every 2 weeks for 24 months or until progression or unacceptable toxic effects occurred. Response was assessed every 8 weeks in accordance with Response Evaluation Criteria in Solid Tumors version 1.1. The primary objectives were safety in patients who received at least one dose of pembrolizumab and the proportion of patients achieving overall responses in patients who received at least one pembrolizumab dose and who either had a post-baseline scan or who discontinued therapy because of clinical disease progression or a treatment-related adverse event before the first post-baseline scan. The study is registered with ClinicalTrials.gov, number NCT01848834, and is ongoing but no longer enrolling patients. Findings From Oct 23, 2013, to May 5, 2014, 39 patients were enrolled. 36 were evaluable for response by central assessment. Eight (22%, 95% CI 10–39) patients were judged to have had an overall response at central review; all responses were partial. All 39 patients were included in the safety analyses. Five (13%) patients had a total of six grade 3 or 4 treatment-related adverse events, consisting of two cases of grade 3 fatigue, one case each of grade 3 pemphigoid, grade 3 hypothyroidism, and grade 3 peripheral sensory neuropathy, and one case of grade 4 pneumonitis. No treatment-related deaths occurred. Interpretation In this population of patients with recurrent or metastatic PD-L1-positive gastric cancer, pembrolizumab had a manageable toxicity profile and promising antitumour activity, warranting further study in phase 2 and 3 trials. Funding Merck & Co.