scispace - formally typeset
Institution

University of Coimbra

EducationCoimbra, Portugal
About: University of Coimbra is a(n) education organization based out in Coimbra, Portugal. It is known for research contribution in the topic(s): Population & Mitochondrion. The organization has 14318 authors who have published 43067 publication(s) receiving 994733 citation(s). The organization is also known as: UC & Universidade dos Estudos Gerais.


Papers
More filters
Journal ArticleDOI
TL;DR: A way is found to visualize and understand the nonlocality of exchange and correlation, its origins, and its physical effects as well as significant interconfigurational and interterm errors remain.
Abstract: Generalized gradient approximations (GGA's) seek to improve upon the accuracy of the local-spin-density (LSD) approximation in electronic-structure calculations. Perdew and Wang have developed a GGA based on real-space cutoff of the spurious long-range components of the second-order gradient expansion for the exchange-correlation hole. We have found that this density functional performs well in numerical tests for a variety of systems: (1) Total energies of 30 atoms are highly accurate. (2) Ionization energies and electron affinities are improved in a statistical sense, although significant interconfigurational and interterm errors remain. (3) Accurate atomization energies are found for seven hydrocarbon molecules, with a rms error per bond of 0.1 eV, compared with 0.7 eV for the LSD approximation and 2.4 eV for the Hartree-Fock approximation. (4) For atoms and molecules, there is a cancellation of error between density functionals for exchange and correlation, which is most striking whenever the Hartree-Fock result is furthest from experiment. (5) The surprising LSD underestimation of the lattice constants of Li and Na by 3--4 % is corrected, and the magnetic ground state of solid Fe is restored. (6) The work function, surface energy (neglecting the long-range contribution), and curvature energy of a metallic surface are all slightly reduced in comparison with LSD. Taking account of the positive long-range contribution, we find surface and curvature energies in good agreement with experimental or exact values. Finally, a way is found to visualize and understand the nonlocality of exchange and correlation, its origins, and its physical effects.

16,870 citations

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2964 moreInstitutions (200)
TL;DR: In this article, a search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10−9.
Abstract: A search for the Standard Model Higgs boson in proton–proton collisions with the ATLAS detector at the LHC is presented. The datasets used correspond to integrated luminosities of approximately 4.8 fb−1 collected at View the MathML source in 2011 and 5.8 fb−1 at View the MathML source in 2012. Individual searches in the channels H→ZZ(⁎)→4l, H→γγ and H→WW(⁎)→eνμν in the 8 TeV data are combined with previously published results of searches for H→ZZ(⁎), WW(⁎), View the MathML source and τ+τ− in the 7 TeV data and results from improved analyses of the H→ZZ(⁎)→4l and H→γγ channels in the 7 TeV data. Clear evidence for the production of a neutral boson with a measured mass of View the MathML source is presented. This observation, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10−9, is compatible with the production and decay of the Standard Model Higgs boson.

8,774 citations

Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

4,756 citations

Journal ArticleDOI
Shaun Purcell1, Shaun Purcell2, Naomi R. Wray3, Jennifer Stone2, Jennifer Stone1, Peter M. Visscher, Michael Conlon O'Donovan4, Patrick F. Sullivan5, Pamela Sklar1, Pamela Sklar2, Douglas M. Ruderfer, Andrew McQuillin, Derek W. Morris6, Colm O'Dushlaine6, Aiden Corvin6, Peter Holmans4, Stuart MacGregor3, Hugh Gurling, Douglas Blackwood7, Nicholas John Craddock5, Michael Gill6, Christina M. Hultman8, Christina M. Hultman9, George Kirov4, Paul Lichtenstein9, Walter J. Muir7, Michael John Owen4, Carlos N. Pato10, Edward M. Scolnick2, Edward M. Scolnick1, David St Clair, Nigel Williams4, Lyudmila Georgieva4, Ivan Nikolov4, Nadine Norton4, Hywel Williams4, Draga Toncheva, Vihra Milanova, Emma Flordal Thelander9, Patrick Sullivan11, Elaine Kenny6, Emma M. Quinn6, Khalid Choudhury12, Susmita Datta12, Jonathan Pimm12, Srinivasa Thirumalai13, Vinay Puri12, Robert Krasucki12, Jacob Lawrence12, Digby Quested14, Nicholas Bass12, Caroline Crombie15, Gillian Fraser15, Soh Leh Kuan, Nicholas Walker, Kevin A. McGhee7, Ben S. Pickard16, P. Malloy7, Alan W Maclean7, Margaret Van Beck7, Michele T. Pato10, Helena Medeiros10, Frank A. Middleton17, Célia Barreto Carvalho10, Christopher P. Morley17, Ayman H. Fanous, David V. Conti10, James A. Knowles10, Carlos Ferreira, António Macedo18, M. Helena Azevedo18, Andrew Kirby2, Andrew Kirby1, Manuel A. R. Ferreira1, Manuel A. R. Ferreira2, Mark J. Daly2, Mark J. Daly1, Kimberly Chambert2, Finny G Kuruvilla2, Stacey Gabriel2, Kristin G. Ardlie2, Jennifer L. Moran2 
06 Aug 2009-Nature
TL;DR: The extent to which common genetic variation underlies the risk of schizophrenia is shown, using two analytic approaches, and the major histocompatibility complex is implicate, which is shown to involve thousands of common alleles of very small effect.
Abstract: Schizophrenia is a severe mental disorder with a lifetime risk of about 1%, characterized by hallucinations, delusions and cognitive deficits, with heritability estimated at up to 80%(1,2). We performed a genome-wide association study of 3,322 European individuals with schizophrenia and 3,587 controls. Here we show, using two analytic approaches, the extent to which common genetic variation underlies the risk of schizophrenia. First, we implicate the major histocompatibility complex. Second, we provide molecular genetic evidence for a substantial polygenic component to the risk of schizophrenia involving thousands of common alleles of very small effect. We show that this component also contributes to the risk of bipolar disorder, but not to several non-psychiatric diseases.

4,174 citations

Journal ArticleDOI
TL;DR: A new kernelized correlation filter is derived, that unlike other kernel algorithms has the exact same complexity as its linear counterpart, which is called dual correlation filter (DCF), which outperform top-ranking trackers such as Struck or TLD on a 50 videos benchmark, despite being implemented in a few lines of code.
Abstract: The core component of most modern trackers is a discriminative classifier, tasked with distinguishing between the target and the surrounding environment. To cope with natural image changes, this classifier is typically trained with translated and scaled sample patches. Such sets of samples are riddled with redundancies—any overlapping pixels are constrained to be the same. Based on this simple observation, we propose an analytic model for datasets of thousands of translated patches. By showing that the resulting data matrix is circulant, we can diagonalize it with the discrete Fourier transform, reducing both storage and computation by several orders of magnitude. Interestingly, for linear regression our formulation is equivalent to a correlation filter, used by some of the fastest competitive trackers. For kernel regression, however, we derive a new kernelized correlation filter (KCF), that unlike other kernel algorithms has the exact same complexity as its linear counterpart. Building on it, we also propose a fast multi-channel extension of linear correlation filters, via a linear kernel, which we call dual correlation filter (DCF). Both KCF and DCF outperform top-ranking trackers such as Struck or TLD on a 50 videos benchmark, despite running at hundreds of frames-per-second, and being implemented in a few lines of code (Algorithm 1). To encourage further developments, our tracking framework was made open-source.

3,880 citations


Authors

Showing all 14318 results

NameH-indexPapersCitations
P. Chang1702154151783
Yang Gao1682047146301
Bin Liu138218187085
P. Sinervo138151699215
Filipe Veloso12888775496
Panagiotis Kokkas128123481051
Nuno Filipe Castro12896076945
Robert Gardner128101577619
Francois Corriveau128102275729
Peter Krieger128117181368
João Carvalho126127877017
Helmut Wolters12685175721
Nicola Venturi12679669518
Sai-Juan Chen121121173991
Harinder Singh Bawa12079866120
Network Information
Related Institutions (5)
University of Antwerp
48.8K papers, 1.6M citations

92% related

University of Pisa
73.1K papers, 2.1M citations

91% related

Sapienza University of Rome
155.4K papers, 4.3M citations

91% related

University of Padua
114.8K papers, 3.6M citations

91% related

University of Münster
69K papers, 2.2M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202281
20213,229
20203,193
20193,090
20182,786
20172,851