scispace - formally typeset
Search or ask a question
Institution

University of Coimbra

EducationCoimbra, Portugal
About: University of Coimbra is a education organization based out in Coimbra, Portugal. It is known for research contribution in the topics: Population & Context (language use). The organization has 14318 authors who have published 43067 publications receiving 994733 citations. The organization is also known as: UC & Universidade dos Estudos Gerais.


Papers
More filters
Book ChapterDOI
07 Oct 2012
TL;DR: Using the well-established theory of Circulant matrices, this work provides a link to Fourier analysis that opens up the possibility of extremely fast learning and detection with the Fast Fourier Transform, which can be done in the dual space of kernel machines as fast as with linear classifiers.
Abstract: Recent years have seen greater interest in the use of discriminative classifiers in tracking systems, owing to their success in object detection. They are trained online with samples collected during tracking. Unfortunately, the potentially large number of samples becomes a computational burden, which directly conflicts with real-time requirements. On the other hand, limiting the samples may sacrifice performance. Interestingly, we observed that, as we add more and more samples, the problem acquires circulant structure. Using the well-established theory of Circulant matrices, we provide a link to Fourier analysis that opens up the possibility of extremely fast learning and detection with the Fast Fourier Transform. This can be done in the dual space of kernel machines as fast as with linear classifiers. We derive closed-form solutions for training and detection with several types of kernels, including the popular Gaussian and polynomial kernels. The resulting tracker achieves performance competitive with the state-of-the-art, can be implemented with only a few lines of code and runs at hundreds of frames-per-second. MATLAB code is provided in the paper (see Algorithm 1).

2,197 citations

Journal ArticleDOI
S. Hong Lee1, Stephan Ripke2, Stephan Ripke3, Benjamin M. Neale3  +402 moreInstitutions (124)
TL;DR: Empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders.
Abstract: Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17-29% of the variance in liability. The genetic correlation calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 ± 0.04 s.e.), moderate between schizophrenia and major depressive disorder (0.43 ± 0.06 s.e.), bipolar disorder and major depressive disorder (0.47 ± 0.06 s.e.), and ADHD and major depressive disorder (0.32 ± 0.07 s.e.), low between schizophrenia and ASD (0.16 ± 0.06 s.e.) and non-significant for other pairs of disorders as well as between psychiatric disorders and the negative control of Crohn's disease. This empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders.

2,058 citations

Journal ArticleDOI
D. S. Akerib1, Henrique Araujo2, X. Bai3, A. J. Bailey2, J. Balajthy4, S. Bedikian5, Ethan Bernard5, A. Bernstein6, Alexander Bolozdynya1, A. W. Bradley1, D. Byram7, Sidney Cahn5, M. C. Carmona-Benitez8, C. Chan9, J.J. Chapman9, A. A. Chiller7, C. Chiller7, K. Clark1, T. Coffey1, A. Currie2, A. Curioni5, Steven Dazeley6, L. de Viveiros10, A. Dobi4, J. E. Y. Dobson11, E. M. Dragowsky1, E. Druszkiewicz12, B. N. Edwards5, C. H. Faham13, S. Fiorucci9, C. E. Flores14, R. J. Gaitskell9, V. M. Gehman13, C. Ghag15, K.R. Gibson1, Murdock Gilchriese13, C. R. Hall4, M. Hanhardt3, S. A. Hertel5, M. Horn5, D. Q. Huang9, M. Ihm16, R. G. Jacobsen16, L. Kastens5, K. Kazkaz6, R. Knoche4, S. Kyre8, R. L. Lander14, N. A. Larsen5, C. Lee1, David Leonard4, K. T. Lesko13, A. Lindote10, M.I. Lopes10, A. Lyashenko5, D.C. Malling9, R. L. Mannino17, Daniel McKinsey5, Dongming Mei7, J. Mock14, M. Moongweluwan12, J. A. Morad14, M. Morii18, A. St. J. Murphy11, C. Nehrkorn8, H. N. Nelson8, F. Neves10, James Nikkel5, R. A. Ott14, M. Pangilinan9, P. D. Parker5, E. K. Pease5, K. Pech1, P. Phelps1, L. Reichhart15, T. A. Shutt1, C. Silva10, W. Skulski12, C. Sofka17, V. N. Solovov10, P. Sorensen6, T.M. Stiegler17, K. O'Sullivan5, T. J. Sumner2, Robert Svoboda14, M. Sweany14, Matthew Szydagis14, D. J. Taylor, B. P. Tennyson5, D. R. Tiedt3, Mani Tripathi14, S. Uvarov14, J.R. Verbus9, N. Walsh14, R. C. Webb17, J. T. White17, D. White8, M. S. Witherell8, M. Wlasenko18, F.L.H. Wolfs12, M. Woods14, Chao Zhang7 
TL;DR: The first WIMP search data set is reported, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data, finding that the LUX data are in disagreement with low-mass W IMP signal interpretations of the results from several recent direct detection experiments.
Abstract: The Large Underground Xenon (LUX) experiment is a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota). The LUX cryostat was filled for the first time in the underground laboratory in February 2013. We report results of the first WIMP search data set, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data with a fiducial volume of 118 kg. A profile-likelihood analysis technique shows our data to be consistent with the background-only hypothesis, allowing 90% confidence limits to be set on spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6 × 10(-46) cm(2) at a WIMP mass of 33 GeV/c(2). We find that the LUX data are in disagreement with low-mass WIMP signal interpretations of the results from several recent direct detection experiments.

1,962 citations

Journal ArticleDOI
Dalila Pinto1, Alistair T. Pagnamenta2, Lambertus Klei3, Richard Anney4  +178 moreInstitutions (46)
15 Jul 2010-Nature
TL;DR: The genome-wide characteristics of rare (<1% frequency) copy number variation in ASD are analysed using dense genotyping arrays to reveal many new genetic and functional targets in ASD that may lead to final connected pathways.
Abstract: The autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in reciprocal social interaction and communication, and the presence of restricted and repetitive behaviours. Individuals with an ASD vary greatly in cognitive development, which can range from above average to intellectual disability. Although ASDs are known to be highly heritable ( approximately 90%), the underlying genetic determinants are still largely unknown. Here we analysed the genome-wide characteristics of rare (<1% frequency) copy number variation in ASD using dense genotyping arrays. When comparing 996 ASD individuals of European ancestry to 1,287 matched controls, cases were found to carry a higher global burden of rare, genic copy number variants (CNVs) (1.19 fold, P = 0.012), especially so for loci previously implicated in either ASD and/or intellectual disability (1.69 fold, P = 3.4 x 10(-4)). Among the CNVs there were numerous de novo and inherited events, sometimes in combination in a given family, implicating many novel ASD genes such as SHANK2, SYNGAP1, DLGAP2 and the X-linked DDX53-PTCHD1 locus. We also discovered an enrichment of CNVs disrupting functional gene sets involved in cellular proliferation, projection and motility, and GTPase/Ras signalling. Our results reveal many new genetic and functional targets in ASD that may lead to final connected pathways.

1,919 citations

Journal ArticleDOI
TL;DR: The minimal standards for the quality of genome sequences and how they can be applied for taxonomic purposes are described.
Abstract: Advancement of DNA sequencing technology allows the routine use of genome sequences in the various fields of microbiology. The information held in genome sequences proved to provide objective and reliable means in the taxonomy of prokaryotes. Here, we describe the minimal standards for the quality of genome sequences and how they can be applied for taxonomic purposes.

1,908 citations


Authors

Showing all 14693 results

NameH-indexPapersCitations
P. Chang1702154151783
Yang Gao1682047146301
Bin Liu138218187085
P. Sinervo138151699215
Filipe Veloso12888775496
Panagiotis Kokkas128123481051
Nuno Filipe Castro12896076945
Robert Gardner128101577619
Francois Corriveau128102275729
Peter Krieger128117181368
João Carvalho126127877017
Helmut Wolters12685175721
Nicola Venturi12679669518
Sai-Juan Chen121121173991
Harinder Singh Bawa12079866120
Network Information
Related Institutions (5)
University of Antwerp
48.8K papers, 1.6M citations

92% related

University of Pisa
73.1K papers, 2.1M citations

91% related

Sapienza University of Rome
155.4K papers, 4.3M citations

91% related

University of Padua
114.8K papers, 3.6M citations

91% related

University of Münster
69K papers, 2.2M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023112
2022530
20213,238
20203,193
20193,090