scispace - formally typeset
Search or ask a question
Institution

University of Cologne

EducationCologne, Germany
About: University of Cologne is a education organization based out in Cologne, Germany. It is known for research contribution in the topics: Population & Transplantation. The organization has 32050 authors who have published 66350 publications receiving 2210092 citations. The organization is also known as: Universität zu Köln & Universitatis Coloniensis.


Papers
More filters
Journal ArticleDOI
TL;DR: Most of the components known in mammals are also present in fish, with clearly recognizable orthologous relationships, and the main innate immune signaling pathways are conserved in mammals and teleost fish.
Abstract: The zebrafish has become a widely used model to study disease resistance and immunity. Although the genes encoding many components of immune signaling pathways have been found in teleost fish, it is not clear whether all components are present or whether the complexity of the signaling mechanisms employed by mammals is similar in fish. We searched the genomes of the zebrafish Danio rerio and two pufferfish for genes encoding components of the Toll-like receptor and interferon signaling pathways, the NLR (NACHT-domain and leucine rich repeat containing) protein family, and related proteins. We find that most of the components known in mammals are also present in fish, with clearly recognizable orthologous relationships. The class II cytokines and their receptors have diverged extensively, obscuring orthologies, but the number of receptors is similar in all species analyzed. In the family of the NLR proteins, the canonical members are conserved. We also found a conserved NACHT-domain protein with WD40 repeats that had previously not been described in mammals. Additionally, we have identified in each of the three fish a large species-specific subgroup of NLR proteins that contain a novel amino-terminal domain that is not found in mammalian genomes. The main innate immune signaling pathways are conserved in mammals and teleost fish. Whereas the components that act downstream of the receptors are highly conserved, with orthologous sets of genes in mammals and teleosts, components that are known or assumed to interact with pathogens are more divergent and have undergone lineage-specific expansions.

370 citations

Journal ArticleDOI
TL;DR: This study presents the production and characterization of a Cre protein that enters mammalian cells and subsequently performs recombination with high efficiency in a time- and concentration-dependent manner and expects that application of His-TAT-NLS-Cre, which can be produced readily in large quantities from a bacterial source, will expand the abilities to manipulate mammalian genomes.
Abstract: Conditional mutagenesis is a powerful tool to analyze gene functions in mammalian cells. The site-specific recombinase Cre can be used to recombine loxP-modified alleles under temporal and spatial control. However, the efficient delivery of biologically active Cre recombinase to living cells represents a limiting factor. In this study we compared the potential of a hydrophobic peptide modified from Kaposi fibroblast growth factor with a basic peptide derived from HIV-TAT to promote cellular uptake of recombinant Cre. We present the production and characterization of a Cre protein that enters mammalian cells and subsequently performs recombination with high efficiency in a time- and concentration-dependent manner. Histidine-tagged Cre recombinase transduced inefficiently unless fused to a nuclear localization signal (NLS). Fusion of NLS-Cre to the fibroblast growth factor transduction peptide did not improve the transducibility, whereas fusion with the TAT peptide significantly enhanced cellular uptake and subsequent recombination. More than 95% recombination efficiency in fibroblast cells, as well as murine embryonic stem cells, was achieved after His-TAT-NLS-Cre transduction. Efficient recombination could also be obtained in primary splenocytes ex vivo. We expect that application of His-TAT-NLS-Cre, which can be produced readily in large quantities from a bacterial source, will expand our abilities to manipulate mammalian genomes.

370 citations

Journal ArticleDOI
TL;DR: Wound healing ability in wild-type versus vimentin-deficient embryos and adult mice is analysed and it is shown that impaired healing is almost entirely due to a failure of mesenchymal contraction at the embryonic wound site.
Abstract: It is generally assumed that the vimentin intermediate filament network present in most mesenchymally-derived cells is in part responsible for the strength and integrity of these cells, and necessary for any tissue movements that require the generation of significant tractional forces. Surprisingly, we have shown that transgenic KO mice deficient for vimentin are apparently able to undergo embryonic development absolutely normally and go onto develop into adulthood and breed without showing any obvious phenotype. However, fibroblasts derived from these mice are mechanically weak and severely disabled in their capacity to migrate and to contract a 3-D collagen network. To assess whether these functions are necessary for more challenging tissue movements such as those driving in vivo tissue repair processes, we have analysed wound healing ability in wild-type versus vimentin-deficient embryos and adult mice. Wounds in vimentin-deficient adult animals showed delayed migration of fibroblasts into the wound site and subsequently retarded contraction that correlated with a delayed appearance of myofibroblasts at the wound site. Wounds made to vimentin-deficient embryos also failed to heal during the 24 hour culture period it takes for wild-type embryos to fully heal an equivalent wound. By DiI marking the wound mesenchyme and following its fate during the healing process we showed that this impaired healing is almost entirely due to a failure of mesenchymal contraction at the embryonic wound site. These observations reveal an in vivo phenotype for the vimentin-deficient mouse, and challenge the dogma that key morphogenetic events occurring during development require generation of significant tractional forces by mesenchymal cells.

370 citations

Journal ArticleDOI
TL;DR: This review will focus on UVB‐triggered induction of matrix metalloproteinases, the so far identified components of theUVB‐modulated signal transduction pathway(s), and the UVB irradiation‐associated generation of reactive oxygen species (ROS).
Abstract: Effects of sunlight have fascinated researchers for decades because nearly every living thing on earth is likely to be exposed to sunlight and the ultraviolet (UV) fraction of it. In addition to detrimental long-term effects such as immunosuppression and skin cancer, premature aging of the skin (photoaging) is a well-documented consequence of exposure to UVA and UVB. Photoaged skin is biochemically characterized by an overgrowth of abnormal elastic fibers in the dermis and by a dramatic decrease of distinct collagen types. Ultraviolet irradiation induces delayed UV-responsive genes, among them matrix metalloproteinases, which degrade macromolecules of the extracellular matrix, a hallmark in carcinogenesis and aging. We are interested in UVB-triggered initial events and in subsequent signaling resulting in enhanced expression of two major members of the matrix metalloproteinase family, the interstitial collagenase (MMP-1) and stromelysin-1 (MMP-3), in human dermal fibroblasts. Especially, these skin cells play a central role in connective tissue breakdown in photoaging and as stromal cells in tumor invasion and metastasis by means of their capability to produce matrix metalloproteinases. In this review, we will focus on UVB-triggered induction of matrix metalloproteinases, the so far identified components of the UVB-modulated signal transduction pathway(s), and the UVB irradiation-associated generation of reactive oxygen species (ROS). Finally, a potentially novel aspect in UVB irradiation-mediated expression of interstitial collagenase and stromelysin-1—namely, the involvement of reactive nitrogen species (RNS)—is discussed.

369 citations

Journal ArticleDOI
09 Aug 2019-Science
TL;DR: In this article, a programmable quantum simulator based on neutral atom arrays with interactions mediated by Rydberg states was used to demonstrate the creation of "Schrodinger cat" states of the Greenberger-Horne-Zeilinger (GHZ) type with up to 20 qubits.
Abstract: Quantum entanglement involving coherent superpositions of macroscopically distinct states is among the most striking features of quantum theory, but its realization is challenging because such states are extremely fragile. Using a programmable quantum simulator based on neutral atom arrays with interactions mediated by Rydberg states, we demonstrate the creation of “Schrodinger cat” states of the Greenberger-Horne-Zeilinger (GHZ) type with up to 20 qubits. Our approach is based on engineering the energy spectrum and using optimal control of the many-body system. We further demonstrate entanglement manipulation by using GHZ states to distribute entanglement to distant sites in the array, establishing important ingredients for quantum information processing and quantum metrology.

368 citations


Authors

Showing all 32558 results

NameH-indexPapersCitations
Julie E. Buring186950132967
Stuart H. Orkin186715112182
Cornelia M. van Duijn1831030146009
Dorret I. Boomsma1761507136353
Frederick W. Alt17157795573
Donald E. Ingber164610100682
Klaus Müllen1642125140748
Klaus Rajewsky15450488793
Frederik Barkhof1541449104982
Stefanie Dimmeler14757481658
Detlef Weigel14251684670
Hidde L. Ploegh13567467437
Luca Valenziano13043794728
Peter Walter12684171580
Peter G. Martin12555397257
Network Information
Related Institutions (5)
Heidelberg University
119.1K papers, 4.6M citations

97% related

Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

97% related

University of Zurich
124K papers, 5.3M citations

95% related

University of Amsterdam
140.8K papers, 5.9M citations

94% related

Utrecht University
139.3K papers, 6.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023324
2022634
20214,225
20204,051
20193,526
20183,078